Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Novikov homology, twisted Alexander polynomials, and Thurston cones


Author: A. V. Pajitnov
Original publication: Algebra i Analiz, tom 18 (2006), nomer 5.
Journal: St. Petersburg Math. J. 18 (2007), 809-835
MSC (2000): Primary 57Rxx
DOI: https://doi.org/10.1090/S1061-0022-07-00975-2
Published electronically: August 10, 2007
MathSciNet review: 2301045
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a connected CW complex, and let $ G$ denote the fundamental group of $ M$. Let $ \pi$ be an epimorphism of $ G$ onto a free finitely generated Abelian group $ H$, let $ \xi:H\to \mathbf R$ be a homomorphism, and let $ \rho$ be an antihomomorphism of $ G$ to the group $ \operatorname{GL}(V)$ of automorphisms of a free finitely generated $ R$-module $ V$ (where $ R$ is a commutative factorial ring).

To these data, we associate the twisted Novikov homology of $ M$, which is a module over the Novikov completion of the ring $ \Lambda=R[H]$. The twisted Novikov homology provides the lower bounds for the number of zeros of any Morse form whose cohomology class equals $ \xi\circ\pi$. This generalizes a result by H. Goda and the author.

In the case when $ M$ is a compact connected 3-manifold with zero Euler characteristic, we obtain a criterion for the vanishing of the twisted Novikov homology of $ M$ in terms of the corresponding twisted Alexander polynomial of the group $ G$.

We discuss the relationship of the twisted Novikov homology with the Thurston norm on the 1-cohomology of $ M$.

The electronic preprint of this work (2004) is available from the ArXiv.


References [Enhancements On Off] (What's this?)

  • 1. G. Burde and H. Zieschang, Knots, de Gruyter Stud. Math., vol. 5, Walter de Gruyter, Berlin, 1985. MR 0808776 (87b:57004)
  • 2. W. H. Cockcroft and R. G. Swan, On the homotopy type of certain two-dimensional complexes, Proc. London Math. Soc. (3) 11 (1961), 194-202. MR 0126271 (23:A3567)
  • 3. M. M. Cohen, A course in simple-homotopy theory, Grad. Texts in Math., vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320 (50:14762)
  • 4. R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn and Co., Boston, MA, 1963. MR 0146828 (26:4348)
  • 5. D. Eisenbud, Commutative algebras. With a view toward algebraic geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • 6. M. Farber, Sharpness of Novikov inequalities, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 49-59; English transl., Funct. Anal. Appl. 19 (1985), no. 1, 40-48. MR 0783706 (86g:58029)
  • 7. H. Goda, Heegaard splitting for sutured manifolds and Murasugi sum, Osaka J. Math. 29 (1992), 21-40. MR 1153177 (93d:57014)
  • 8. -, On handle number of Seifert surfaces in $ S^3$, Osaka J. Math. 30 (1993), 63-80. MR 1200821 (93k:57010)
  • 9. H. Goda, T. Kitano, and T. Morifuji, Reidemeister torsion, twisted Alexander polynomial and fibered knots, e-print:math.GT/0311155; Comment. Math. Helv. 80 (2005), no. 1, 51-61. MR 2130565 (2005m:57008)
  • 10. H. Goda and T. Morifuji, Twisted Alexander polynomial for $ SL(2,\mathbb{C})$-representations and fibered knots, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 4, 97-101. MR 2013157 (2004i:57004)
  • 11. H. Goda and A. Pajitnov, Twisted Novikov homology and circle-valued Morse theory for knots and links, e-print: arXiv.math.GT/0312374; Osaka J. Math. 42 (2005), no. 3, 557-572. MR 2166722 (2006e:57015)
  • 12. B. Jiang and S. Wang, Twisted topological invariants associated with representations, Topics in Knot Theory (Erzurum, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 399, Kluwer Acad. Publ., Dordrecht, 1993, pp. 211-227. MR 1257911
  • 13. T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442. MR 1405595 (97g:57007)
  • 14. F. Latour, Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. No. 80 (1994), 135-194 (1995). MR 1320607 (96f:57030)
  • 15. X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Preprint 1990; Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380. MR 1852950 (2003f:57018)
  • 16. W. Massey, Homology and cohomology theory, Monogr. Textbooks Pure Appl. Math., vol. 46, Marcel Dekker, Inc., New York-Basel, 1978. MR 0488016 (58:7594)
  • 17. B. R. McDonald, Linear algebra over commutative rings, Monogr. Textbooks Pure Appl. Math., vol. 87, Marcel Dekker, Inc., New York, 1984, 544 pp. MR 0769104 (86d:13008)
  • 18. C. T. McMullen, The Alexander polynomial of a $ 3$-manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 153-171; http://abel.math.harvard. edu/ctm/papers. MR 1914929 (2003d:57044)
  • 19. S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981), no. 1, 31-35; English transl., Soviet Math. Dokl. 24 (1981), no. 2, 222-226 (1982). MR 0630459 (83a:58025)
  • 20. -, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), no. 5, 3-49; English transl., Russian Math. Surveys 37 (1982), no. 5, 1-56. MR 0676612 (84h:58032)
  • 21. A. V. Pazhitnov, On the sharpness of inequalities of Novikov type for manifolds with a free abelian fundamental group, Mat. Sb. 180 (1989), no. 11, 1486-1523; English transl., Math. USSR-Sb. 68 (1991), 351-389. MR 1034426 (91c:57040)
  • 22. -, Modules over some localizations of the ring of Laurent polynomials, Mat. Zametki 46 (1989), no. 5, 40-49; English transl., Math. Notes 46 (1989), no. 5-6, 856-862 (1990). MR 1033419 (91c:13010)
  • 23. -, On the Novikov complex for rational Morse forms, Preprint, no. 12, Inst. for Mat. og datalogi, Odense Univ., Oct. 1991; Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 297-338; The pdf-files available at http://www.math.sciences. univ-nantes.fr/pajitnov/. MR 1344724 (97f:57033)
  • 24. -, Surgery on the Novikov complex, Rapport de Recherche CNRS URA 758, Nantes, 1993; the pdf-file available at: http://www.math.sciences. univ-nantes.fr/pajitnov/; $ \mathrm{K}$-Theory 10 (1996), 323-412. MR 1404410 (97j:57043)
  • 25. -, On the asymptotics of Morse numbers of finite covers of manifolds, E-print: math.DG/9810136, 22 Oct 1998; Topology 38 (1999), no. 3, 529-541. MR 1670400 (99m:57031)
  • 26. A. V. Pazhitnov and A. Ranicki, The Whitehead group of the Novikov ring, E-print: math.AT/0012031, 5 dec.2000; K-Theory 21 (2000), no. 4, 325-365. MR 1828181 (2002g:19001)
  • 27. C. Weber, A. Pajitnov, and L. Rudolph (K. Veber, A. Pazhitnov, and L. Rudolf), Morse-Novikov number for knots and links, Algebra i Analiz 13 (2001), no. 3, 105-118; English transl., St. Petersburg Math. J. 13 (2002), no. 3, 417-426. MR 1850189 (2002k:57040)
  • 28. A. Ranicki, The algebraic theory of torsion. I. Foundations, Algebraic and Geometric Topology (New Brunswich, NJ, 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 199-237. MR 0802792 (87a:18017)
  • 29. D. Rolfsen, Knots and links, Math. Lecture Ser., No. 7, Publish or Perish, Inc., Berkeley, CA, 1976; Corrected reprint of the 1976 original, 1990. MR 0515288 (58:24236); MR 1277811 (95c:57018)
  • 30. D. Schütz, One-parameter fixed-point theory and gradient flows of closed 1-forms, e-print: math.DG/0104245; K-Theory 25 (2002), 59-97. MR 1899700 (2003g:57055)
  • 31. -, Gradient flows of closed 1-forms and their closed orbits, e-print: math.DG/0009055; Forum Math. 14 (2002), 509-537. MR 1900172 (2003h:57044)
  • 32. J.-Cl. Sikorav, Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de un-formes fermées, Thése de Doctorat d'Etat Es Sciences Math., Univ. Paris-Sud, Centre d'Orsay, 1987.
  • 33. Le Ty Kuok Tkhang, Varieties of representations and their subvarieties of cohomology jumps for knot groups, Mat. Sb. 184 (1993), no. 2, 57-82; English transl., Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 187-209. MR 1214944 (94a:57016)
  • 34. W. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, 99-130. MR 0823443 (88h:57014)
  • 35. V. Turaev, The Alexander polynomial of a three-dimensional manifold, Mat. Sb. 97 (1975), no. 3, 341-359; English transl., Math. USSR-Sb. 26 (1975), no. 3, 313-329. MR 0383425 (52:4306)
  • 36. -, A norm for the cohomology of 2-complexes, Algebr. Geom. Topol. 2 (2002), 137-155. MR 1885218 (2002m:57005)
  • 37. M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256. MR 1273784 (95g:57021)
  • 38. F. Waldhausen, Algebraic $ K$-theory of generalized free products. I, II, Ann. of Math. (2) 108 (1978), 135-204. MR 0498807 (58:16845a)
  • 39. E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983). MR 0683171 (84b:58111)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 57Rxx

Retrieve articles in all journals with MSC (2000): 57Rxx


Additional Information

A. V. Pajitnov
Affiliation: Laboratoire Mathématiques Jean Leray, UMR 6629, Université de Nantes, Faculté des Sciences, 2, Rue de la Houssinière, 44072, Nantes, Cedex, France
Email: pajitnov@math.univ-nantes.fr

DOI: https://doi.org/10.1090/S1061-0022-07-00975-2
Received by editor(s): February 22, 2006
Published electronically: August 10, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society