Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Systems of diagram categories and $ K$-theory. I


Author: G. Garkusha
Original publication: Algebra i Analiz, tom 18 (2006), nomer 6.
Journal: St. Petersburg Math. J. 18 (2007), 957-996
MSC (2000): Primary 19D99
DOI: https://doi.org/10.1090/S1061-0022-07-00978-8
Published electronically: October 2, 2007
MathSciNet review: 2307357
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With any left system of diagram categories or any left pointed dérivateur, a $ K$-theory space is associated. This $ K$-theory space is shown to be canonically an infinite loop space and to have a lot of common properties with Waldhausen's $ K$-theory. A weaker version of additivity is shown. Also, Quillen's $ K$-theory of a large class of exact categories including the Abelian categories is proved to be a retract of the $ K$-theory of the associated dérivateur.


References [Enhancements On Off] (What's this?)

  • 1. A. Grothendieck, Pursuing stacks, Manuscript, 1983.
  • 2. -, Les dérivateurs, Manuscript, 1983-1990; www.institut.math.jussieu.fr/~maltsin/groth/ Derivateurs.html
  • 3. A. Heller, Homotopy theories, Mem. Amer. Math. Soc. 71 (1988), no. 383, 78 pp. MR 0920963 (89b:55013)
  • 4. B. Keller, Derived categories and universal problems, Comm. Algebra 19 (1991), no. 3, 699-747. MR 1102982 (92b:18010)
  • 5. J. Franke, Uniqueness theorems for certain triangulated categories with an Adams spectral sequence, $ K$-Theory Preprint Archives, no. 139, 1996.
  • 6. G. Maltsiniotis, Structure triangulée sur les catégories des coefficients d'un dérivateur triangulé, Exposés au groupe de travail ``Algèbre et topologie homotopiques'', 2001.
  • 7. -, La K-théorie d'un dérivateur triangulé, Preprint, 2002; www.institut.math.jussieu.fr/ ~maltsin.
  • 8. G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 0353298 (50:5782)
  • 9. F. Waldhausen, Algebraic K-theory of spaces, Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin, 1985, pp. 318-419. MR 0802796 (86m:18011)
  • 10. G. Garkusha, Systems of diagram categories and K-theory. II, Math. Z. 249 (2005), no. 3, 641-682. MR 2121745 (2006b:19006)
  • 11. D.-C. Cisinski and A. Neeman, Additivity for derivator K-theory, Preprint, 2005; www.math. univ-paris13.fr/~cisinski.
  • 12. S. MacLane, Categories for the working mathematician, Grad. Texts in Math., vol. 5, Springer-Verlag, New York, 1998. MR 1712872 (2001j:18001)
  • 13. M. Hovey, Model categories, Math. Surveys Monogr., vol. 63, Amer. Math. Soc., Providence, RI, 1999. MR 1650134 (99h:55031)
  • 14. D.-C. Cisinski, Images directes cohomologiques dans les catégories de modèles, Ann. Math. Blaise Pascal 10 (2003), no. 2, 195-244. MR 2031269 (2004k:18009)
  • 15. K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1974), 419-458. MR 0341469 (49:6220)
  • 16. D.-C. Cisinski, Catégories dérivables, Preprint, 2002; www.math.univ-paris13.fr/~cisinski.
  • 17. A. K. Bousfield and E. M. Friedlander, Homotopy theory of $ \Gamma$-spaces, spectra, and bisimplicial sets, Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, IL, 1977), II, Lecture Notes in Math., vol. 658, Springer-Verlag, Berlin, 1978, pp. 80-130. MR 0513569 (80e:55021)
  • 18. B. Keller, Le dérivateur triangulé associé à une catégorie exacte, Preprint, 2002.
  • 19. R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247-435. MR 1106918 (92f:19001)
  • 20. D.-C. Cisinski, An e-interchange, January 2004.
  • 21. F. Waldhausen, Algebraic $ K$-theory of generalized free products, Ann. of Math. (2) 108 (1978), 135-204. MR 0498807 (58:16845a)
  • 22. A. Neeman, K-theory for triangulated categories $ 3\frac{1}{2}$, A, B, $ K$-Theory 20 (2000), 97-174; 243-298. MR 1798824 (2002b:18014); MR 1798828 (2002b:18015)
  • 23. -, The K-theory of triangulated categories, Handbook of $ K$-Theory. Vols. 1, 2, Springer-Verlag, Berlin, 2005, pp. 1011-1080. MR 2181838 (2006g:19004)
  • 24. B. Toën, Homotopical and higher categorical structures in algebraic geometry, Habilitation thesis, Preprint math.AG/0312262.
  • 25. B. Toën and G. Vezzosi, A remark on K-theory and S-categories, Topology 43 (2004), no. 4, 765-791. MR 2061207 (2005e:19001)
  • 26. B. Toën, Comparing S-categories and ``dérivateurs de Grothendieck'', Preprint, 2003; math.unice. fr/~toen.
  • 27. M. Schlichting, A note on $ K$-theory and triangulated categories, Invent. Math. 150 (2002), 111-116. MR 1930883 (2003h:18015)
  • 28. D. Quillen, Higher algebraic $ K$-theory. I, Algebraic $ \mathrm{K}$-Theory, I: Higher $ \mathrm{K}$-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147. MR 0338129 (49:2895)
  • 29. A. Vaknin, Determinants in triangulated categories, $ K$-Theory 24 (2001), 57-68. MR 1865601 (2002i:19002)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 19D99

Retrieve articles in all journals with MSC (2000): 19D99


Additional Information

G. Garkusha
Affiliation: Department of Mathematics, University of Wales Swansea, Singleton Park, SA2 8PP Swansea, United Kingdom
Email: garkusha@imi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-07-00978-8
Keywords: Systems of diagram categories, Grothendieck's d\'erivateurs, algebraic $K$-theory
Received by editor(s): March 8, 2006
Published electronically: October 2, 2007
Additional Notes: Supported by the ICTP Research Fellowship
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society