Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Some extremal problems for vector bundles


Author: V. V. Makeev
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 19 (2007), nomer 2.
Journal: St. Petersburg Math. J. 19 (2008), 261-277
MSC (2000): Primary 52A99, 51M20
DOI: https://doi.org/10.1090/S1061-0022-08-00998-9
Published electronically: February 7, 2008
MathSciNet review: 2333901
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Analogs of well-known problems and theorems on convex bodies are considered for the case where the convex bodies are replaced by continuous fields of convex bodies in vector bundles.


References [Enhancements On Off] (What's this?)

  • 1. V. V. Makeev, On some combinatorial geometry problems for vector bundles, Algebra i Analiz 14 (2002), no. 6, 169-191; English transl., St. Petersburg Math. J. 14 (2003), no. 6, 1017-1032. MR 1965917 (2005b:52009)
  • 2. B. Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, RI, 1963, pp. 233-270; Borsuk's problem and related questions, ibid. pp. 271-284. MR 0156259 (27:6187); MR 0154183 (27:5134)
  • 3. V. V. Makeev, Planar sections of convex bodies and universal fibrations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), 219-233; English transl., J. Math. Sci. (N.Y.) 119 (2004), no. 2, 249-256. MR 1879268 (2002k:52004)
  • 4. I. Fáry, Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France 78 (1950), 152-161. MR 0039288 (12:526a)
  • 5. L. Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Grundlehren Math. Wiss. in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 65, Springer-Verlag, Berlin, 1953. MR 0057566 (15:248b)
  • 6. A. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 23 (1948), 237-240. MR 0027543 (10:320r)
  • 7. L. G. Shnirel'man, On certain geometrical properties of closed curves, Uspekhi Mat. Nauk Vyp. 10 (1944), 34-44. (Russian) MR 0012531 (7:35c)
  • 8. V. V. Makeev, The Knaster problem and almost spherical sections, Mat. Sb. 180 (1989), no. 3, 424-431; English transl., Math. USSR-Sb. 66 (1990), no. 2, 431-438. MR 0993234 (90d:55005)
  • 9. -, Approximation of two-dimensional sections of convex bodies by disks and ellipses, Algebra i Analiz 16 (2004), no. 6, 162-171; English transl., St. Petersburg Math. J. 16 (2005), no. 6, 1043-1049. MR 2117452 (2005i:52008)
  • 10. -, Affine-inscribed and affine-circumscribed polygons and polytopes, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 231 (1995), 286-298; English transl., J. Math. Sci. (N.Y.) 91 (1998), no. 6, 3518-3525. MR 1434300 (98b:52004)
  • 11. A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, pp. 123-160. MR 0139079 (25:2518)
  • 12. V. V. Makeev, On geometric properties of three-dimensional convex bodies, Algebra i Analiz 14 (2002), no. 5, 96-109; English transl., St. Petersburg Math. J. 14 (2003), no. 5, 781-790. MR 1970335 (2004c:52001)
  • 13. -, On approximation of a three-dimensional convex body by cylinders, Algebra i Analiz 17 (2005), no. 2, 133-144; English transl., St. Petersburg Math. J. 17 (2006), no. 2, 315-323. MR 2159587 (2006e:52007)
  • 14. R. Buck and E. Buck, Equipartition of convex sets, Math. Mag. 22 (1949), 195-198. MR 0029521 (10:621c)
  • 15. V. V. Makeev, Some properties of continuous mappings of spheres and problems in combinatorial geometry, Geometric Questions in the Theory of Functions and Sets, Kalinin. Gos. Univ., Kalinin, 1986, pp. 75-85. (Russian) MR 1027885
  • 16. Yu. G. Reshetnyak, An extremal problem from the theory of convex curves, Uspekhi Mat. Nauk (N.S.) 8 (1953), no. 6, 125-126. (Russian) MR 0061400 (15:819d)
  • 17. D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954), 235-244. MR 0066667 (16:613d)
  • 18. V. V. Makeev, On some geometric properties of convex bodies. II, Algebra i Analiz 15 (2003), no. 6, 74-85; English transl., St. Petersburg Math. J. 15 (2004), no. 6, 867-874. MR 2044632 (2004k:52021)
  • 19. F. J. Dyson, Continuous functions defined on spheres, Ann. of Math. (2) 54 (1951), 534-536. MR 0044620 (13:450f)
  • 20. J. Pal, Über ein elementares Variationsproblem, Danske Vid. Selsk Mat.-Fys. Medd. 3 (1920), no. 2, 35 p.
  • 21. V. V. Makeev, Universal coverings. I, Ukrain. Geom. Sb. No. 24 (1981), 70-79. (Russian) MR 0629813 (83e:52009)
  • 22. D. Gale, On inscribing $ n$-dimensional sets in a regular $ n$-simplex, Proc. Amer. Math. Soc. 4 (1953), 222-225. MR 0053534 (14:787b)
  • 23. V. V. Makeev, The asphericity of the shadows of a convex body, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 329 (2005), 67-78; English transl., J. Math. Sci. (N. Y.) 140 (2007), no. 4, 535-541. MR 2215332 (2007a:52004)
  • 24. E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8 (1988), Charles Conley Memorial Issue, 73-85. MR 0967630 (89k:55002)
  • 25. R. T. Zivaljević and S. T. Vrećica, An extension of the ham sandwich theorem, Bull. London Math. Soc. 22 (1990), 183-186. MR 1045292 (91j:52006)
  • 26. V. L. Dol'nikov, Transversals of families of sets in $ \mathbb{R}^n$ and a relationship between Helly and Borsuk theorems, Mat. Sb. 184 (1993), no. 5, 111-132; English transl., Russian Acad. Sci. Sb. Math. 79 (1994), no. 1, 93-107. MR 1239754 (94g:52005)
  • 27. F. Cohen and E. L. Lusk, Configuration-like spaces and the Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 56 (1976), 313-317. MR 0425949 (54:13899)
  • 28. A. I. Shcherba, On estimate of the perimeter of a norming figure in the Minkowski plane, 5 Internat. Conf. on Geometry and Topology in Memory A. V. Pogorelov (Cherkassy, 2003): Thesis. (Russian)
  • 29. -, On estimate of the perimeter of a unit disk in the Minkowski plane, Trudy Rubtsov. Industr. Inst. Vyp. 12 (2003), 96-107. (Russian)
  • 30. V. V. Makeev, An upper bound for the perimeter of a nonsymmetric unit disk in the Minkowski plane, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 299 (2003), 262-266; English transl., J. Math. Sci. (N.Y.) 131 (2005), no. 1, 5406-5408. MR 2038827 (2005a:52007)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 52A99, 51M20

Retrieve articles in all journals with MSC (2000): 52A99, 51M20


Additional Information

V. V. Makeev
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr. 28, Staryĭ Peterhof, St. Petersburg 198504, Russia
Email: mvv57@inbox.ru

DOI: https://doi.org/10.1090/S1061-0022-08-00998-9
Keywords: Field of convex bodies, mass distribution, normed plane
Received by editor(s): February 14, 2005
Published electronically: February 7, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society