Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Poncelet problem for rational conics


Author: V. A. Malyshev
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 19 (2007), nomer 4.
Journal: St. Petersburg Math. J. 19 (2008), 597-601
MSC (2000): Primary 51N20
DOI: https://doi.org/10.1090/S1061-0022-08-01012-1
Published electronically: May 9, 2008
MathSciNet review: 2381936
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Poncelet problem for rational conics may have a solution only for polygons with $ 3,4,5,6,7,8,9,10,12,14,16,18,20$, or $ 24$ vertices.


References [Enhancements On Off] (What's this?)

  • 1. P. Griffiths and J. Harris, On Cayley's explicit solution to Poncelet's porism, Enseign. Math. (2) 24 (1978), 31-40. MR 0497281 (80g:51017)
  • 2. V. P. Burskiĭ and A. S. Zhedanov, The Dirichlet problems for the equation of string vibration, the Poncelet problem, the Pell-Abel equation, and some other related problems, Ukrain. Mat. Zh. 58 (2006), no. 4, 435-450; English transl., Ukrainian Math. J. 58 (2006), no. 4, 487-504. MR 2272795 (2008b:35162)
  • 3. V. A. Malyshev, The Abel equation, Algebra i Analiz 13 (2001), no. 6, 1-55; English transl., St. Petersburg Math. J. 13 (2002), no. 6, 893-938. MR 1883839 (2003a:14064)
  • 4. -, Periods of quadratic irrationalities, and torsion of elliptic curves, Algebra i Analiz 15 (2003), no. 4, 177-203; English transl., St. Petersburg Math. J. 15 (2004), no. 4, 587-602. MR 2068984 (2005c:11095)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 51N20

Retrieve articles in all journals with MSC (2000): 51N20


Additional Information

V. A. Malyshev
Affiliation: Rybinsk State Aviation Technology Academy, Rybinsk, Russia
Email: wmal@ryb.adm.yar.ru

DOI: https://doi.org/10.1090/S1061-0022-08-01012-1
Keywords: Conics
Received by editor(s): April 3, 2006
Published electronically: May 9, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society