Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Rational surfaces and the canonical dimension of $ \operatorname{\mathbf{PGL}}_6$


Authors: J.-L. Colliot-Thélène, N. A. Karpenko and A. S. Merkur'ev
Translated by: the authors
Original publication: Algebra i Analiz, tom 19 (2007), nomer 5.
Journal: St. Petersburg Math. J. 19 (2008), 793-804
MSC (2000): Primary 14L10, 14L15
DOI: https://doi.org/10.1090/S1061-0022-08-01021-2
Published electronically: June 27, 2008
MathSciNet review: 2381945
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By definition, the ``canonical dimension'' of an algebraic group over a field is the maximum of the canonical dimensions of the principal homogeneous spaces under that group. Over a field of characteristic zero, it is proved that the canonical dimension of the projective linear group $ \operatorname{\mathbf{PGL}}_6$ is 3. We give two different proofs, both of which lean upon the birational classification of rational surfaces over a nonclosed field. One of the proofs involves taking a novel look at del Pezzo surfaces of degree 6.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin, Lipman's proof of resolution of singularities for surfaces, Arithmetic Geometry (Storrs, Conn., 1984) (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, New York, 1986, pp. 267-287. MR 0861980
  • 2. G. Berhuy and Z. Reichstein, On the notion of canonical dimension for algebraic groups, Adv. Math. 198 (2005), no. 1, 128-171. MR 2183253 (2006j:11053)
  • 3. J.-L. Colliot-Thélène, Cours à l'IHP en 1999, notes available on the author's homepage http://www.math.u-psud.fr/ ~colliot/liste-cours-exposes.html.
  • 4. K. R. Coombes, Every rational surface is separably split, Comment. Math. Helv. 63 (1988), 305-311. MR 0948785 (89d:14055)
  • 5. F. Enriques, Sulle irrazionalità da cui può farsi dipendere la risoluzione d'un' equazione algebrica $ f(x,y,z) = 0$ con funzioni razionali di due parametri, Math. Ann. 49 (1897), 1-23. MR 1510950
  • 6. V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19-43; English transl., Math. USSR-Izv. 14 (1980), no. 1, 17-39. MR 0525940 (80m:14021)
  • 7. N. A. Karpenko, On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc. 15 (2000), no. 1, 1-22. MR 1751923 (2001b:11029)
  • 8. N. Karpenko and A. Merkurjev, Canonical $ p$-dimension of algebraic groups, Adv. Math. 205 (2006), 410-433. MR 2258262 (2007d:14084)
  • 9. M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions. With a preface in French by J. Tits, Amer. Math. Soc. Colloq. Publ., vol. 44, Amer. Math. Soc., Providence, RI, 1998. MR 1632779 (2000a:16031)
  • 10. J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), Bd. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • 11. J. Lipman, Introduction to resolution of singularities, Algebraic Geometry (Humboldt State Univ., Arcata, CA, 1974), Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, RI, 1975, pp. 187-230. MR 0389901 (52:10730)
  • 12. -, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), 151-207. MR 0491722 (58:10924)
  • 13. Yu. I. Manin, Cubic forms. Algebra, geometry, arithmetic, ``Nauka'', Moscow, 1972; English transl., North-Holland Math. Library, vol. 4, North-Holland Publ.Co., Amsterdam, 1986. MR 0360592 (50:13040); MR 0833513 (87d:11037)
  • 14. A. Merkurjev, Steenrod operations and degree formulas, J. Reine Angew. Math. 565 (2003), 13-26. MR 2024643 (2004k:14010)
  • 15. A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13-47. MR 1324207 (96c:20083)
  • 16. S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), 133-176. MR 0662120 (84e:14032)
  • 17. M. Rost, Remarks on Jordan algebras ($ \dim 9$, $ \deg 3$), cubic surfaces, and del Pezzo surfaces ($ \deg 6$), Preprint, available on the author's homepage http://www.mathematik.uni-bielefeld.de/~rost/.
  • 18. A. Schofield and M. Van den Bergh, The index of a Brauer class on a Brauer-Severi variety, Trans. Amer. Math. Soc. 333 (1992), no. 2, 729-739. MR 1061778 (92m:12003)
  • 19. K. Zainoulline, Canonical $ p$-dimensions of algebraic groups and degrees of basic polynomial invariants, Bull. London Math. Soc. 39 (2007), no. 2, 301-304. MR 2323462

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 14L10, 14L15

Retrieve articles in all journals with MSC (2000): 14L10, 14L15


Additional Information

J.-L. Colliot-Thélène
Affiliation: CNRS Mathématiques, UMR 8628, Bâtiment 425, Université Paris-Sud, F-91405 Orsay, France
Email: Jean-Louis.Colliot-Thelene@math.u-psud.fr

N. A. Karpenko
Affiliation: Université Pierre et Marie Curie – Paris 6, Institut de Mathématiques de Jussieu, 4 place Jussieu, F-75252 Paris Cedex 05, France
Email: karpenko@math.jussieu.fr

A. S. Merkur'ev
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
Email: merkurev@math.ucla.edu

DOI: https://doi.org/10.1090/S1061-0022-08-01021-2
Keywords: Algebraic group, projective linear group, rational surfaces, birational classification, canonical dimension
Received by editor(s): September 17, 2007
Published electronically: June 27, 2008
Additional Notes: This paper is the outcome of a discussion during a hike at Oberwolfach
Dedicated: Dedicated to the 100th anniversary of the birth of Dmitriĭ Konstantinovich Faddeev
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society