Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Mean value theorems for automorphic $ L$-functions


Author: O. M. Fomenko
Translated by: the author
Original publication: Algebra i Analiz, tom 19 (2007), nomer 5.
Journal: St. Petersburg Math. J. 19 (2008), 853-866
MSC (2000): Primary 11M41
DOI: https://doi.org/10.1090/S1061-0022-08-01024-8
Published electronically: June 27, 2008
MathSciNet review: 2381948
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a holomorphic Hecke eigencuspform of even weight $ k\ge 12$ for $ \operatorname{SL}(2, \mathbb{Z})$ and let $ L(s, \operatorname{sym}^2f)$ be the symmetric square $ L$-function of $ f$. Let $ C(x)$ be the summatory function of the coefficients of $ L(s,\operatorname{sym}^2 f)$. The true order is found for

$\displaystyle \int^{x}_{0}C(y)^2\,dy. $


References [Enhancements On Off] (What's this?)

  • 1. G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), 79-98. MR 0382176 (52:3064)
  • 2. R. A. Rankin, Contributions to the theory of Ramanujan's function $ \tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. MR 0000411 (1:69d)
  • 3. A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50. MR 0002626 (2:88a)
  • 4. S. Gelbart and F. Shahidi, Analytic properties of automorphic $ L$-functions, Acad. Press, Inc., Boston, MA, 1988. MR 0951897 (89f:11077)
  • 5. A. Walfisz, Über die Koeffizientensummen einiger Modulformen, Math. Ann. 108 (1933), 75-90. MR 1512835
  • 6. O. M. Fomenko, Identities involving the coefficients of automorphic $ L$-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 314 (2004), 247-256; English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 6, 1749-1755. MR 2119744 (2005m:11093)
  • 7. K. Chandrasekharan and R. Narasimhan, On the mean value of the error term of a class of arithmetical functions, Acta Math. 112 (1964), 41-67. MR 0160765 (28:3976)
  • 8. M. Jutila, Lectures on a method in the theory of exponential sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., vol. 80, Springer-Verlag, Berlin, 1987. MR 0910497 (89g:11069)
  • 9. A. Ivić, Large values of certain number-theoretic error terms, Acta Arith. 56 (1990), 135-159. MR 1075641 (91j:11078)
  • 10. Y.-K. Lau, On the mean square formula of the error term for a class of arithmetical functions, Monatsh. Math. 128 (1999), 111-129. MR 1712484 (2000h:11107)
  • 11. O. M. Fomenko, The behavior of Riesz means of the coefficients of a symmetric square $ L$-function, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 337 (2006), 274-286; English transl., J. Math. Sci. (N.Y.) 143 (2007), no. 3, 3174-3181. MR 2271968 (2007h:11059)
  • 12. A. Ivić , K. Matsumoto, and Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math. Proc. Cambridge Philos. Soc. 127 (1999), 117-131. MR 1692491 (2000c:11068)
  • 13. A. Ivić, On some mean square estimates in the Rankin-Selberg problem, Appl. Anal. Discrete Math. 1 (2007), 111-121. MR 2316591
  • 14. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Clarendon Press, Oxford Univ. Press, New York, 1986. MR 0882550 (88c:11049)
  • 15. A. Ivić, The Riemann zeta-function, Wiley, New York, 1985. MR 0792089 (87d:11062)
  • 16. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, pp. 367-385; Collected papers. Vol. 2, Springer-Verlag, Berlin, 1991, pp. 47-63. MR 1220477 (94f:11085); MR 1295844 (95g:01032)
  • 17. H. Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210. MR 1544568
  • 18. K.-C. Tong, On divisor problems. I, III, Acta Math. Sinica 5 (1955), 313-324; 6 (1956), 515-541. (Chinese) MR 0073632 (17:462c); MR 0098718 (20:5173)
  • 19. D. R. Heath-Brown, Mean values of the zeta function and divisor problems, Recent Progress in Analytic Number Theory, Vol. 1 (Durham, 1979), Acad. Press, London-New York, 1981, pp. 115-119. MR 0637345 (83c:10057)
  • 20. A. de Roton, On the mean square of the error term for an extended Selberg class, Acta Arith. 126 (2007), 27-55. MR 2284311 (2007j:11121)
  • 21. J. L. Hafner, On the representation of the summatory functions of a class of arithmetical functions, Analytic Number Theory (Philadelphia, 1980), Lecture Notes in Math., vol. 899, Springer, Berlin-New York, 1981, pp. 148-165. MR 0654524 (83g:10030)
  • 22. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL$ (2)$ and GL$ (3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542. MR 0533066 (81e:10025)
  • 23. J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), 161-181. MR 1289494 (95m:11048)
  • 24. D. Bump and D. Ginzburg, Symmetric square $ L$-functions on GL$ (r)$, Ann. of Math. (2) 136 (1992), 137-205. MR 1173928 (93i:11058)
  • 25. E. C. Titchmarsh, The zeta-function of Riemann, Cambridge Univ. Press, London, 1930.
  • 26. H. Davenport, Note on mean-value theorems for the Riemann zeta-function, J. London Math. Soc. 10 (1935), 136-138.
  • 27. A. Ivić, On mean values of some zeta-functions in the critical strip, J. Théor. Nombres Bordeaux 15 (2003), 163-178. MR 2019009 (2004i:11097)
  • 28. K. Matsumoto, Liftings and mean value theorems for automorphic $ L$-functions, Proc. London Math. Soc. (3) 90 (2005), 297-320. MR 2142129 (2006f:11053)
  • 29. Y.-K. Lau and K.-M. Tsang, Mean square of the remainder term in the Dirichlet divisor problem, J. Théor. Nombres Bordeaux 7 (1995), 75-92. MR 1413567 (98k:11126)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 11M41

Retrieve articles in all journals with MSC (2000): 11M41


Additional Information

O. M. Fomenko
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: fomenko@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-08-01024-8
Keywords: Symmetric square $L$-function, summatory function, Euler product, Voronoi formula, mean value
Received by editor(s): April 5, 2007
Published electronically: June 27, 2008
Dedicated: Dedicated to the 100th anniversary of D. K. Faddeev’s birth
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society