Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Surface wave running along the edge of an elastic wedge


Author: I. V. Kamotskiĭ
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 20 (2008), nomer 1.
Journal: St. Petersburg Math. J. 20 (2009), 59-63
MSC (2000): Primary 74J15
DOI: https://doi.org/10.1090/S1061-0022-08-01037-6
Published electronically: November 13, 2008
MathSciNet review: 2411969
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of the waves mentioned in the title is proved for the case of an acute wedge.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Maradudin et al., Vibrational edge modes in finite crystals, Phys. Rev. B 6 (1972), 1106-1111.
  • 2. P. E. Lagasse, Analysis of a dispersion-free guides for elastic waves, Electron. Lett. 8 (1972), no. 15, 372-373.
  • 3. V. V. Krylov, Geometro-acoustical approach to description of localized modes for vibration of a solid elastic wedge, Zh. Tekhn. Fiz. 60 (1990), no. 2, 1-7. (Russian)
  • 4. A. V. Shanin, Excitation and scattering of a wedge wave in an elastic wedge with angle close to $ 180^{\circ}$, Akust. Zh. 43 (1997), no. 3, 402-408. (Russian)
  • 5. D. V. Evans, M. Levitin, and D. Vassiliev, Existence theorems for trapped modes, J. Fluid Mech. 261 (1994), 21–31. MR 1265871, https://doi.org/10.1017/S0022112094000236
  • 6. A. S. Bonnet-Ben Dhia, J. Duterte, and P. Joly, Mathematical analysis of elastic surface waves in topographic waveguides, Math. Models Methods Appl. Sci. 9 (1999), no. 5, 755–798. MR 1697393, https://doi.org/10.1142/S0218202599000373
  • 7. I. V. Kamotskiĭ and S. A. Nazarov, Elastic waves localized near periodic families of defects, Dokl. Akad. Nauk 368 (1999), no. 6, 771–773 (Russian); English transl., Dokl. Phys. 44 (1999), no. 10, 715–717. MR 1749046
  • 8. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (French). Travaux et Recherches Mathématiques, No. 21. MR 0464857
  • 9. Chérif Amrouche and Vivette Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44(119) (1994), no. 1, 109–140. MR 1257940
  • 10. I. M. Glazman, \cyr Pryamye metody kachestvennogo spektral′nogo analiza, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0185471
    I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Translated from the Russian by the IPST staff, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. MR 0190800
  • 11. M. Š. Birman and M. Z. Solomjak, \cyr Spektral′naya teoriya samosopryazhennykh operatorov v gil′bertovom prostranstve, Leningrad. Univ., Leningrad, 1980 (Russian). MR 609148
    M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. MR 1192782

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 74J15

Retrieve articles in all journals with MSC (2000): 74J15


Additional Information

I. V. Kamotskiĭ
Email: i.kamotski@maths.bath.ac.uk

DOI: https://doi.org/10.1090/S1061-0022-08-01037-6
Keywords: Surface wave, Reyleigh wave, acute wedges, variational principle
Received by editor(s): April 5, 2007
Published electronically: November 13, 2008
Additional Notes: Supported by RFBR, grant no. 07-01-00548
Article copyright: © Copyright 2008 American Mathematical Society