Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Lagrange's mean motion problem


Author: S. Yu. Favorov
Translated by: the author
Original publication: Algebra i Analiz, tom 20 (2008), nomer 2.
Journal: St. Petersburg Math. J. 20 (2009), 319-324
MSC (2000): Primary 33B10, 30B50
DOI: https://doi.org/10.1090/S1061-0022-09-01049-8
Published electronically: February 4, 2009
MathSciNet review: 2424001
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The famous mean motion problem, dating back to Lagrange, is about the existence of the average speed for the amplitude of any exponential polynomial with exponents on the imaginary axis, whenever the variable moves along a horizontal line. This problem was completely solved by B. Jessen and H. Tornehave in Acta Mathematica, vol. 77, 1945. Here, we give a simple version of that proof.


References [Enhancements On Off] (What's this?)

  • 1. P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283.
  • 2. H. Bohr, Zur Theorie der fast periodischen Funktionen. I, II, Acta Math. 45 (1925), 29-127; 46 (1925), 101-214. MR 1555201
  • 3. F. Bernstein, Über eine Anwendung der Mengenlehre auf ein aus der Theorie der säkularen Störungen herrührendes Problem, Math. Ann. 71 (1912), 417-439.
  • 4. R. Doss, On mean motion, Amer. J. Math. 79 (1957), no. 2, 389-396. MR 0085390 (19:32a)
  • 5. Ph. Hartman, Mean motions and almost periodic functions, Trans. Amer. Math. Soc. 46 (1939), 66-81. MR 0000068 (1:12a)
  • 6. M. Hall, The theory of groups, The Macmillan Co., New York, NY, 1959. MR 0103215 (21:1996)
  • 7. B. Jessen and H. Tornehave, Mean motions and zeros of almost periodic functions, Acta Math. 77 (1945), 137-279. MR 0015558 (7:438d)
  • 8. J. L. Lagrange, Théorie des variations séqulaires des éléments des planètes, I, II, Nouveaux Mémoires de l'Académie de Berlin (1781, 1782), Œuvres de Lagrange. T. 5, Gauthier-Villars, Paris, 1870, pp. 123-344.
  • 9. B. M. Levitan, Almost periodic functions, GITTL, Moscow, 1953. (Russian). MR 0060629 (15:700a)
  • 10. B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables, ``Nauka'', Moscow, 1985; English transl., Transl. Math. Monogr., vol. 110, Amer. Math. Soc., Providence, RI, 1992. MR 0831938 (88b:32001); MR 1192135 (93g:32001)
  • 11. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352. MR 1511862
  • 12. -, Mean motion. I, Amer. J. Math. 60 (1938), 889-896. MR 1507355
  • 13. -, Mean motion. II, Amer. J. Math. 61 (1939), 143-148. MR 1507367

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 33B10, 30B50

Retrieve articles in all journals with MSC (2000): 33B10, 30B50


Additional Information

S. Yu. Favorov
Affiliation: Department of Mathematics, Kharkov National University, Svobody Square 4, Kharkov 61077, Ukraine
Email: favorov_s@mail.ru, fav@univer.kharkov.ua

DOI: https://doi.org/10.1090/S1061-0022-09-01049-8
Keywords: Mean motion, exponential polynomial, Lagrange's conjecture, Weierstrass preparation theorem
Received by editor(s): August 10, 2007
Published electronically: February 4, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society