Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the maximum principle for harmonic functions


Author: A. Vagharshakyan
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 325-337
MSC (2000): Primary 30C80, 31A15
DOI: https://doi.org/10.1090/S1061-0022-09-01050-4
Published electronically: April 6, 2009
MathSciNet review: 2454450
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some generalizations of the maximum principle for harmonic functions are discussed.


References [Enhancements On Off] (What's this?)

  • 1. S. Mandelbrojt, Séries de Dirichlet. Principes et méthodes, Monogr. Internat. Math. Modernes, vol. 11, Gauthier-Villars, Paris, 1969. MR 0259079 (41:3721)
  • 2. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Stud., No. 13, Van Nostrand Co., Inc., Princeton, NJ, 1967. MR 0225986 (37:1576)
  • 3. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., No. 30, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • 4. A. Vagarshakyan, On the maximum principle, Izv. Akad. Nauk Armenii Mat. 26 (1991), no. 4, 300-308 (1992); English transl., Contemp. Math. Anal. 26 (1991), no. 4, 21-28. MR 1231851 (94h:30031)
  • 5. -, Boundary properties of certain classes of harmonic functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 10 (1975), no. 1, 54-60. (Russian) MR 0382681 (52:3563)
  • 6. Henrik Shahgholian and Ashot Vagharshakyan, On Phragmen Lindelöf principle, Complex Variables Theory Appl. 46 (2001), no. 4, 295-305. MR 1873963 (2002j:30032)
  • 7. L. Hörmander, The analysis of linear partial differential operators. I, Grundlehren Math. Wiss., Bd. 256, Springer-Verlag, Berlin, 1983. MR 0717035 (85g:35002a)
  • 8. N. Landkof, Foundations of modern potential theory, ``Nauka'', Moscow, 1966; English transl., Grundlehren Math. Wiss., Bd. 180, Springer-Verlag, New York-Heidelberg, 1972. MR 0214795 (35:5644); MR 0350027 (50:2520)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 30C80, 31A15

Retrieve articles in all journals with MSC (2000): 30C80, 31A15


Additional Information

A. Vagharshakyan
Affiliation: Institute of Mathematics, Armenian National Academy of Sciences, Bagramian 24-b, 375019, Yerevan, Armenia
Email: vagharshakyan@yahoo.com

DOI: https://doi.org/10.1090/S1061-0022-09-01050-4
Keywords: Harmonic functions, maximum principle
Received by editor(s): March 5, 2007
Published electronically: April 6, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society