Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On the maximum principle for harmonic functions

Author: A. Vagharshakyan
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 325-337
MSC (2000): Primary 30C80, 31A15
Published electronically: April 6, 2009
MathSciNet review: 2454450
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some generalizations of the maximum principle for harmonic functions are discussed.

References [Enhancements On Off] (What's this?)

  • 1. S. Mandelbrojt, Séries de Dirichlet. Principes et méthodes, Monographies Internationales de Mathématiques Modernes, vol. 11, Gauthier-Villars, Paris, 1969 (French). MR 0259079
  • 2. Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
  • 3. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 4. A. A. Vagarshakyan, On the maximum principle, Izv. Akad. Nauk Armenii Mat. 26 (1991), no. 4, 300–308, 363 (1992) (Russian, with English, Russian and Armenian summaries); English transl., J. Contemp. Math. Anal. 26 (1991), no. 4, 21–28. MR 1231851
  • 5. A. A. Vagaršakjan, Boundary properties of certain classes of harmonic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 10 (1975), no. 1, 54–60, 93 (Russian, with Armenian and English summaries). MR 0382681
  • 6. Henrik Shahgholian and Ashot Vagharshakyan, On Phragmen Lindelöf principle, Complex Variables Theory Appl. 46 (2001), no. 4, 295–305. MR 1873963,
  • 7. L. Hörmander, The analysis of linear partial differential operators. I, Grundlehren Math. Wiss., Bd. 256, Springer-Verlag, Berlin, 1983. MR 0717035 (85g:35002a)
  • 8. N. S. Landkof, \cyr Osnovy sovremennoĭ teorii potentsiala, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0214795
    N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 30C80, 31A15

Retrieve articles in all journals with MSC (2000): 30C80, 31A15

Additional Information

A. Vagharshakyan
Affiliation: Institute of Mathematics, Armenian National Academy of Sciences, Bagramian 24-b, 375019, Yerevan, Armenia

Keywords: Harmonic functions, maximum principle
Received by editor(s): March 5, 2007
Published electronically: April 6, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society