Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Fibonacci-even numbers: Binary additive problem, distribution over progressions, and spectrum
HTML articles powered by AMS MathViewer

by V. G. Zhuravlev
Translated by: N. B. Lebedinskaya
St. Petersburg Math. J. 20 (2009), 339-360
DOI: https://doi.org/10.1090/S1061-0022-09-01051-6
Published electronically: April 6, 2009

Abstract:

The representations $\overrightarrow {N}_1+\overrightarrow {N}_2=D$ of a natural number $D$ as the sum of two Fibonacci-even numbers $\overrightarrow {N}_i=F_1 \circ N_i$, where $\circ$ is the circular Fibonacci multiplication, are considered. For the number $s(D)$ of solutions, the asymptotic formula $s(D)=c(D) D +r(D)$ is proved; here $c(D)$ is a continuous, piecewise linear function and the remainder $r(D)$ satisfies the inequality \[ |r(D)|\leq 5+\Bigl (\frac {1}{\ln (1/\tau )} + \frac {1}{\ln 2} \Bigr ) \ln D, \] where $\tau$ is the golden section.

The problem concerning the distribution of Fibonacci-even numbers $\overrightarrow {N}$ over arithmetic progressions $\overrightarrow {N} \equiv r \mathtt {mod} d$ is also studied. Let $l_{F_1}(d,r,X)$ be the number of $N$’$s$, $0 \leq N \leq X$, satisfying the above congruence. Then the asymptotic formula \[ l_{F_1}(d,r,X)=\frac {X}{d} + c(d) \ln X \] is true, where $c(d)=\mathit {O}(d \ln d)$ and the constant in $\mathit {O}$ does not depend on $X$, $d$, or $r$. In particular, this formula implies the uniformity of the distribution of the Fibonacci-even numbers over progressions for all differences $d=\mathit {O}(\frac {X^{1/2}}{\ln X})$.

The set $\overrightarrow {\mathbb {Z}}$ of Fibonacci-even numbers is an integral modification of the well-known one-dimensional Fibonacci quasilattice $\mathcal {F}$. Like $\mathcal {F}$, the set $\overrightarrow {\mathbb {Z}}$ is a quasilattice, but it is not a model set. However, it is shown that the spectra $\Lambda _{\mathcal {F}}$ and $\Lambda _{\overrightarrow {\mathbb {Z}}}$ coincide up to a scale factor $\nu =1+\tau ^2$, and an explicit formula is obtained for the structural amplitudes $f_{\overrightarrow {\mathbb {Z}}}(\lambda )$, where $\lambda =a+b \tau$ lies in the spectrum: \[ f_{\overrightarrow {\mathbb {Z}}}(\lambda )= \frac {\sin (\pi b \tau )}{\pi b \tau } \exp (-3 \pi i \; b \tau ). \]

References
  • B. K. Vaĭnshteĭn, Modern crystallography. Vol. 2, “Nauka”, Moscow, 1980. (Russian)
  • V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), no. Trudy po Teorii Chisel, 83–106, 253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4658–4672. MR 2138453, DOI 10.1007/s10958-006-0262-z
  • V. G. Zhuravlev, Sums of squares over the Fibonacci o-ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 337 (2006), no. Anal. Teor. Chisel. i Teor. Funkts. 21, 165–190, 290 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 143 (2007), no. 3, 3108–3123. MR 2271962, DOI 10.1007/s10958-007-0195-1
  • V. G. Zhuravlev, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89–122 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 2, 307–340. MR 2316983, DOI 10.1070/IM2007v071n02ABEH002358
  • V. G. Zhuravlev, One-dimensional Fibonacci quasilattices and their applications to Diophantine equations and the Euclidean algorithm, Algebra i Analiz 19 (2007), no. 3, 151–182 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 3, 431–454. MR 2340709, DOI 10.1090/S1061-0022-08-01005-4
  • V. G. Zhuravlev and A. V. Maleev, Diffraction of two-dimensional quasiperiodic Rauzy tiling, crystallography (to appear). (Russian)
  • L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
  • Ju. V. Matijasevič, A connection between systems of word and length equations and Hilbert’s tenth problem, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 8 (1968), 132–144 (Russian). MR 0246772
  • Ju. V. Matijasevič, Two reductions of Hilbert’s tenth problem, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 8 (1968), 145–158 (Russian). MR 0246773
  • Boris Adamczewski, Répartition des suites $(n\alpha )_{n\in \Bbb N}$ et substitutions, Acta Arith. 112 (2004), no. 1, 1–22 (French). MR 2040589, DOI 10.4064/aa112-1-1
  • Tom C. Brown and Peter Jau-Shyong Shiue, Sums of fractional parts of integer multiples of an irrational, J. Number Theory 50 (1995), no. 2, 181–192. MR 1316813, DOI 10.1006/jnth.1995.1012
  • N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR 1970385, DOI 10.1007/b13861
  • A. Hof, On diffraction by aperiodic structures, Comm. Math. Phys. 169 (1995), no. 1, 25–43. MR 1328260
  • C. Janot, Quasicrystals, Clarendon Press, Oxford, 1994.
  • Donald E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), no. 1, 57–60. MR 947168, DOI 10.1016/0893-9659(88)90176-0
  • Jeffrey C. Lagarias, Mathematical quasicrystals and the problem of diffraction, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 61–93. MR 1798989
  • Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 0485769
  • Robert V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403–441. MR 1460032
  • —, Model sets: A survey, From Quasicrystals to More Complex Systems (F. Alex, F. Dénoyer, and J. P. Gazeau, eds.), EPD Science, Les Ulis; Springer-Verlag, Berlin, 2000, pp. 145–166.
  • Martin Schlottmann, Cut-and-project sets in locally compact abelian groups, Quasicrystals and discrete geometry (Toronto, ON, 1995) Fields Inst. Monogr., vol. 10, Amer. Math. Soc., Providence, RI, 1998, pp. 247–264. MR 1636782, DOI 10.1090/fim/010/09
  • Martin Schlottmann, Generalized model sets and dynamical systems, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 143–159. MR 1798991
  • A. V. Shutov, New estimates in the Hecke-Kesten problem, Analytic and probabilistic methods in number theory/Analiziniai ir tikimybiniai metodai skaičių teorijoje, TEV, Vilnius, 2007, pp. 190–203. MR 2397152
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 06A11
  • Retrieve articles in all journals with MSC (2000): 06A11
Bibliographic Information
  • V. G. Zhuravlev
  • Affiliation: Vladimir State Pedagogical University, Av. Stroiteleǐ 11, Vladimir 600024, Russia
  • Email: vzhuravlev@mail.ru
  • Received by editor(s): June 5, 2007
  • Published electronically: April 6, 2009
  • Additional Notes: Supported by RFBR (grant no. 05-01-00435)
  • © Copyright 2009 American Mathematical Society
  • Journal: St. Petersburg Math. J. 20 (2009), 339-360
  • MSC (2000): Primary 06A11
  • DOI: https://doi.org/10.1090/S1061-0022-09-01051-6
  • MathSciNet review: 2454451