Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On symmetrizability of hyperbolic matrix spaces

Author: E. Yu. Panov
Translated by: The author
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 465-471
MSC (2000): Primary 15A30, 15A06
Published electronically: April 8, 2009
MathSciNet review: 2454456
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new symmetrizability criterion for linear matrix spaces is proposed, with applications to the theory of first order conservation laws.

References [Enhancements On Off] (What's this?)

  • 1. M. Goto and F. D. Grosshans, Semisimple Lie algebras, Lecture Notes in Pure and Appl. Math., vol. 38, Marcel Dekker, Inc., New York-Basel, 1978. MR 0573070 (58:28084)
  • 2. J.-P. Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. MR 0218496 (36:1582)
  • 3. E. Yu. Panov, On a class of systems of quasilinear conservation laws, Mat. Sb. 188 (1997), no. 5, 85-112; English transl., Sb. Math. 188 (1997), no. 5, 725-751. MR 1478631 (98m:35128)
  • 4. -, On a nonlocal theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 1, 133-184; English transl., Izv. Math. 63 (1999), no. 1, 129-179. MR 1701842 (2000e:35140)
  • 5. -, On the symmetrizability of first-order hyperbolic systems, Dokl. Akad. Nauk 396 (2004), no. 1, 28-31; English transl. in Dokl. Math. MR 2115906

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 15A30, 15A06

Retrieve articles in all journals with MSC (2000): 15A30, 15A06

Additional Information

E. Yu. Panov
Affiliation: Novgorod State University, Russia

Keywords: Hyperbolic matrix space, spectrum, symmetrizable system
Received by editor(s): January 29, 2007
Published electronically: April 8, 2009
Additional Notes: Supported by RFBR (grant no. 06-01-00289) and by Deutsche Forschungsgemeinschaft (DFG project no. 436 RUS 113/895/0-1).
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society