Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



The $ \mathbb{Z}_p$-rank of a topological $ K$-group

Author: O. Yu. Ivanova
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 20 (2008), nomer 4.
Journal: St. Petersburg Math. J. 20 (2009), 569-591
MSC (2000): Primary 11S70
Published electronically: June 1, 2009
MathSciNet review: 2473745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complete two-dimensional local field $ K$ of mixed characteristic with finite second residue field is considered. It is shown that the rank of the quotient $ U(1)K_2^{\mathrm{top}}K/T_K$, where $ T_K$ is the closure of the torsion subgroup, is equal to the degree of the constant subfield of $ K$ over $ \mathbb{Q}_p$. Also, a basis of this quotient is constructed in the case where there exists a standard field $ L$ containing $ K$ such that $ L/K$ is an unramified extension.

References [Enhancements On Off] (What's this?)

  • 1. I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 1993. A constructive approach; With a foreword by I. R. Shafarevich. MR 1218392
  • 2. Serge Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR 0160763
  • 3. J.-P. Serre, Local fields, Grad. Texts in Math., vol. 67, Springer-Verlag, New York-Berlin, 1979. MR 0554237 (82e:12016)
  • 4. I. Zhukov, Milnor and topological 𝐾-groups of higher-dimensional complete fields, Algebra i Analiz 9 (1997), no. 1, 98–147 (Russian); English transl., St. Petersburg Math. J. 9 (1998), no. 1, 69–105. MR 1458420
  • 5. A. I. Madunts and I. B. Zhukov, Multidimensional complete fields: topology and other basic constructions, Proceedings of the St. Petersburg Mathematical Society, Vol. III, Amer. Math. Soc. Transl. Ser. 2, vol. 166, Amer. Math. Soc., Providence, RI, 1995, pp. 1–34. MR 1363290,
  • 6. I. B. Zhukov and M. V. Koroteev, Elimination of wild ramification, Algebra i Analiz 11 (1999), no. 6, 153–177 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 6, 1063–1083. MR 1746073
  • 7. Igor Zhukov, Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 5–18. MR 1804916,
  • 8. O. Hyodo, Wild ramification in the imperfect residue field case, Galois Representations and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 287-314. MR 0948250 (89j:11116)
  • 9. Ivan Fesenko, Topological Milnor 𝐾-groups of higher local fields, Invitation to higher local fields (Münster, 1999) Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 61–74. MR 1804920,
  • 10. I. B. Fesenko, Theory of local fields. Local class field theory. Multidimensional local class field theory, Algebra i Analiz 4 (1992), no. 3, 1–41 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 3, 403–438. MR 1190770
  • 11. Sergei V. Vostokov, Explicit formulas for the Hilbert symbol, Invitation to higher local fields (Münster, 1999) Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 81–89. MR 1804922,
  • 12. K. Kato, A generalization of local class field theory by using $ K$-groups. I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 26 (1979), 303-376. MR 0550688 (81b:12016)
  • 13. O. Yu. Ivanova, Topological 𝐾-groups of two-dimensional local fields, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 343 (2007), no. Vopr. Teor. Predts. Algebr. i Grupp. 15, 206–221, 274–275 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 147 (2007), no. 5, 7088–7097. MR 2469418,

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 11S70

Retrieve articles in all journals with MSC (2000): 11S70

Additional Information

O. Yu. Ivanova
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, Staryĭ Peterhof, 198504 St. Petersburg, Russia

Keywords: Second topological $K$-group, local field, torsion
Received by editor(s): December 21, 2007
Published electronically: June 1, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society