Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

The $ \mathbb{Z}_p$-rank of a topological $ K$-group


Author: O. Yu. Ivanova
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 20 (2008), nomer 4.
Journal: St. Petersburg Math. J. 20 (2009), 569-591
MSC (2000): Primary 11S70
DOI: https://doi.org/10.1090/S1061-0022-09-01062-0
Published electronically: June 1, 2009
MathSciNet review: 2473745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complete two-dimensional local field $ K$ of mixed characteristic with finite second residue field is considered. It is shown that the rank of the quotient $ U(1)K_2^{\mathrm{top}}K/T_K$, where $ T_K$ is the closure of the torsion subgroup, is equal to the degree of the constant subfield of $ K$ over $ \mathbb{Q}_p$. Also, a basis of this quotient is constructed in the case where there exists a standard field $ L$ containing $ K$ such that $ L/K$ is an unramified extension.


References [Enhancements On Off] (What's this?)

  • 1. I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. A constructive approach, Transl. Math. Monogr., vol. 121, Amer. Math. Soc., Providence, RI, 1993. MR 1218392 (94d:11095)
  • 2. S. Lang, Algebraic numbers, Addison-Wesley Publ. Co., Inc., Reading, MA 1964. MR 0160763 (28:3974)
  • 3. J.-P. Serre, Local fields, Grad. Texts in Math., vol. 67, Springer-Verlag, New York-Berlin, 1979. MR 0554237 (82e:12016)
  • 4. I. B. Zhukov, Milnor and topological $ K$-groups of multidimensional complete fields, Algebra i Analiz 9 (1997), no. 1, 98-147; English transl., St. Petersburg Math. J. 9 (1998), no. 1, 69-105. MR 1458420 (98m:11131)
  • 5. I. B. Zhukov and A. I. Madunts, Multidimensional complete fields: Topology and other basic constructions, Trudy S.-Peterburg. Mat. Obshch. 3 (1995), 4-46; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 166, Amer. Math. Soc., Providence, RI, 1995, pp. 1-34. MR 1363290 (97b:12009)
  • 6. I. B. Zhukov and M. V. Koroteev, Elimination of wild ramification, Algebra i Analiz 11 (1999), no. 6, 153-177; English transl., St. Petersburg Math. J. 11 (2000), no. 6, 1063-1083. MR 1746073 (2002a:11134)
  • 7. I. Zhukov, Higher dimensional local fields, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 5-18. MR 1804916 (2001k:11245)
  • 8. O. Hyodo, Wild ramification in the imperfect residue field case, Galois Representations and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 287-314. MR 0948250 (89j:11116)
  • 9. I. Fesenko, Topological Milnor K-groups of higher local fields, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 61-74. MR 1804920 (2001k:11247)
  • 10. -, Theory of local fields. Local class field theory. Multidimensional local class field theory, Algebra i Analiz 4 (1992), no. 3, 1-41; English transl., St. Petersburg Math. J. 4 (1993), no. 3, 403-438. MR 1190770 (93i:11138)
  • 11. S. Vostokov, Explicit formulas for the Hilbert symbol, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 81-89. MR 1804922 (2002a:11138)
  • 12. K. Kato, A generalization of local class field theory by using $ K$-groups. I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 26 (1979), 303-376. MR 0550688 (81b:12016)
  • 13. O. Yu. Ivanova, Topological $ K$-groups of two-dimensional local fields, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 343 (2007), 206-221; English transl., J. Math. Sci. (N. Y.) 147 (2007), no. 5, 7088-1097. MR 2469418

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 11S70

Retrieve articles in all journals with MSC (2000): 11S70


Additional Information

O. Yu. Ivanova
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, Staryĭ Peterhof, 198504 St. Petersburg, Russia
Email: olgaiv80@mail.ru

DOI: https://doi.org/10.1090/S1061-0022-09-01062-0
Keywords: Second topological $K$-group, local field, torsion
Received by editor(s): December 21, 2007
Published electronically: June 1, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society