Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On solvability of perturbed Sobolev type equations
HTML articles powered by AMS MathViewer

by V. E. Fedorov and O. A. Ruzakova
Translated by: the authors
St. Petersburg Math. J. 20 (2009), 645-664
DOI: https://doi.org/10.1090/S1061-0022-09-01065-6
Published electronically: June 2, 2009

Abstract:

Linear Sobolev type equations \[ L\dot u(t)=Mu(t)+Nu(t),\quad t\in \overline {\mathbb R}_+,\] are considered, with degenerate operator $L$, strongly $(L,p)$-radial operator $M$, and perturbing operator $N$. By using methods of perturbation theory for operator semigroups and the theory of degenerate semigroups, unique solvability conditions for the Cauchy problem and Showalter problem for such equations are deduced. The abstract results obtained are applied to the study of initial boundary value problems for a class of equations, the operators in which are polynomials of elliptic selfadjoint operators, including various equations of filtration theory. Perturbed linearized systems of the phase space equations and of the Navier–Stokes equations are also considered. In all cases the perturbed operators are integral or differential.
References
  • G. A. Sviridyuk, On the general theory of operator semigroups, Uspekhi Mat. Nauk 49 (1994), no. 4(298), 47–74 (Russian); English transl., Russian Math. Surveys 49 (1994), no. 4, 45–74. MR 1309441, DOI 10.1070/RM1994v049n04ABEH002390
  • G. V. Demidenko and S. V. Uspenskiĭ, Uravneniya i sistemy, ne razreshennye otnositel′no starsheĭ proizvodnoĭ, Nauchnaya Kniga (NII MIOONGU), Novosibirsk, 1998 (Russian, with Russian summary). K 90-letiyu Akademika Sergeya L′vovicha Soboleva. [Dedicated to Academician Sergeĭ L′vovich Sobolev on the 90th anniversary of his birth]; With an appendix containing a reprint of a paper by Sobolev [Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), 3–50; MR0069382 (16,1029d)]. MR 1831690
  • G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003. MR 2225515, DOI 10.1515/9783110915501
  • A. G. Sveshnikov, A. B. Al′shin, M. O. Korpusov, and Yu. D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007. (Russian)
  • Angelo Favini and Atsushi Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 215, Marcel Dekker, Inc., New York, 1999. MR 1654663
  • V. E. Fedorov, Degenerate strongly continuous semigroups of operators, Algebra i Analiz 12 (2000), no. 3, 173–200 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 12 (2001), no. 3, 471–489. MR 1778194
  • V. E. Fedorov, Holomorphic resolving semigroups of Sobolev-type equations in locally convex spaces, Mat. Sb. 195 (2004), no. 8, 131–160 (Russian, with Russian summary); English transl., Sb. Math. 195 (2004), no. 7-8, 1205–1234. MR 2101340, DOI 10.1070/SM2004v195n08ABEH000841
  • V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces, Sibirsk. Mat. Zh. 46 (2005), no. 2, 426–448 (Russian, with Russian summary); English transl., Siberian Math. J. 46 (2005), no. 2, 333–350. MR 2141208, DOI 10.1007/s11202-005-0035-9
  • R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199–221. MR 54167, DOI 10.1090/S0002-9947-1953-0054167-3
  • Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
  • S. G. Kreĭn and M. I. Khazan, Differential equations in a Banach space, Mathematical analysis, Vol. 21, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 130–264 (Russian). MR 736523
  • V. V. Ivanov, Perturbation of uniformly summable operator semigroups, Dokl. Akad. Nauk SSSR 250 (1980), no. 2, 269–273 (Russian). MR 557767
  • V. V. Ivanov, Uniformly summable semigroups of operators. II. Perturbation of semigroups, Trudy Inst. Mat. (Novosibirsk) 9 (1987), no. Issled. Geom. “v tselom” i Mat. Anal., 159–182, 208 (Russian). MR 929254
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • G. A. Sviridyuk and N. A. Manakova, Regular perturbations of a class of linear equations of Sobolev type, Differ. Uravn. 38 (2002), no. 3, 423–425, 432 (Russian, with Russian summary); English transl., Differ. Equ. 38 (2002), no. 3, 447–450. MR 2005085, DOI 10.1023/A:1016086615265
  • Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
  • R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal. 3 (1972), 527–543. MR 315239, DOI 10.1137/0503051
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • P. I. Plotnikov and V. N. Starovoĭtov, The Stefan problem with surface tension as a limit of the phase field model, Differentsial′nye Uravneniya 29 (1993), no. 3, 461–471, 550 (Russian, with Russian summary); English transl., Differential Equations 29 (1993), no. 3, 395–404. MR 1236334
  • P. I. Plotnikov and A. V. Klepachëva, Phase field equations and gradient flows of marginal functions, Sibirsk. Mat. Zh. 42 (2001), no. 3, 651–669, iii (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 3, 551–567. MR 1852242, DOI 10.1023/A:1010431411758
  • V. E. Fedorov and A. V. Urazaeva, An inverse problem for a class of singular linear operator-differential equations, Trudy Voronezh. Zimneĭ Mat. Shkoly, Voronezh. Gos. Univ., Voronezh, 2004, pp. 16–172. (Russian)
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34G25
  • Retrieve articles in all journals with MSC (2000): 34G25
Bibliographic Information
  • V. E. Fedorov
  • Affiliation: Chelyabinsk State University, Ul. Br. Kashirinykh, 454021 Chelyabinsk, Russia
  • Email: kar@csu.ru
  • O. A. Ruzakova
  • Affiliation: Chelyabinsk State University, Ul. Br. Kashirinykh, 454021 Chelyabinsk, Russia
  • Email: amber@csu.ru
  • Received by editor(s): April 14, 2007
  • Published electronically: June 2, 2009
  • © Copyright 2009 American Mathematical Society
  • Journal: St. Petersburg Math. J. 20 (2009), 645-664
  • MSC (2000): Primary 34G25
  • DOI: https://doi.org/10.1090/S1061-0022-09-01065-6
  • MathSciNet review: 2473748