Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On solvability of perturbed Sobolev type equations


Authors: V. E. Fedorov and O. A. Ruzakova
Translated by: the authors
Original publication: Algebra i Analiz, tom 20 (2008), nomer 4.
Journal: St. Petersburg Math. J. 20 (2009), 645-664
MSC (2000): Primary 34G25
DOI: https://doi.org/10.1090/S1061-0022-09-01065-6
Published electronically: June 2, 2009
MathSciNet review: 2473748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Linear Sobolev type equations

$\displaystyle L\dot u(t)=Mu(t)+Nu(t),\quad t\in\overline{\mathbb{R}}_+,$

are considered, with degenerate operator $ L$, strongly $ (L,p)$-radial operator $ M$, and perturbing operator $ N$. By using methods of perturbation theory for operator semigroups and the theory of degenerate semigroups, unique solvability conditions for the Cauchy problem and Showalter problem for such equations are deduced. The abstract results obtained are applied to the study of initial boundary value problems for a class of equations, the operators in which are polynomials of elliptic selfadjoint operators, including various equations of filtration theory. Perturbed linearized systems of the phase space equations and of the Navier-Stokes equations are also considered. In all cases the perturbed operators are integral or differential.


References [Enhancements On Off] (What's this?)

  • 1. G. A. Sviridyuk, On the general theory of operator semigroups, Uspekhi Mat. Nauk 49 (1994), no. 4, 47-74; English transl., Russian Math. Surveys 49 (1994), no. 4, 45-74. MR 1309441 (96i:34135)
  • 2. G. V. Demidenko and S. V. Uspenskiĭ, Partial differential equations and systems not solvable with respect to the highest-order derivative, Nauchnaya Kniga, Novosibirsk, 1998; English transl., Monogr. Textbooks Pure Appl. Math., vol. 256, Marcel Dekker, Inc., New York, 2003. MR 1831690 (2002j:35001); MR 2064818 (2005a:35001)
  • 3. G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003. MR 2225515 (2007c:47095)
  • 4. A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, and Yu. D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007. (Russian)
  • 5. A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., vol. 215, Marcel Dekker, Inc., New York, 1999. MR 1654663 (99i:34079)
  • 6. V. E. Fedorov, Degenerate strongly continuous semigroups of operators, Algebra i Analiz 12 (2000), no. 3, 173-200; English transl., St. Petersburg Math. J. 12 (2001), no. 3, 471-489. MR 1778194 (2001k:47060)
  • 7. -, Holomorphic resolving semigroups of Sobolev-type equations in locally convex spaces, Mat. Sb. 195 (2004), no. 8, 131-160; English transl., Sb. Math. 195 (2004), no. 7-8, 1205-1234. MR 2101340 (2005i:47065)
  • 8. -, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces, Sibirsk. Mat. Zh. 46 (2005), no. 2, 426-448; English transl., Siberian Math. J. 46 (2005), no. 2, 333-350. MR 2141208 (2006c:47045)
  • 9. R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199-221. MR 0054167 (14:882b)
  • 10. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957. MR 0089373 (19:664d)
  • 11. S. G. Kreĭn and M. I. Khazan, Differential equations in Banach space, Itogi Nauki i Tekhniki. Ser. Mat. Anal., vol. 21, VINITI, Moscow, 1983, pp. 130-264; English transl. in J. Soviet Math. 30 (1985), no. 3. MR 0736523 (85f:34116)
  • 12. V. V. Ivanov, Perturbation of uniformly summable operator semigroups, Dokl. Akad. Nauk SSSR 250 (1980), no. 2, 269-273; English transl., Soviet Math. Dokl. 21 (1980), no. 1, 48-52. MR 0557767 (81d:47030)
  • 13. -, Uniformly summable semigroups of operators. II. Perturbation of the semigroups, Trudy Inst. Mat. (Novosibirsk), vol. 9, Nauka, Novosibirsk, 1987, pp. 159-182. (Russian) MR 0929254 (89d:47090)
  • 14. N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory, John Wiley and Sons, Inc., New York, 1988. MR 1009162 (90g:47001a)
  • 15. G. A. Sviridyuk and N. A. Manakova, Regular perturbations of a class of linear equations of Sobolev type, Differ. Uravn. 38 (2002), no. 3, 423-425; English transl., Differ. Equ. 38 (2002), no. 3, 447-450. MR 2005085 (2004f:34088)
  • 16. H. Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645 (96f:46001)
  • 17. R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal. 3 (1972), no. 3, 527-543. MR 0315239 (47:3788)
  • 18. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 0610244 (83j:35084)
  • 19. P. I. Plotnikov and V. N. Starovoĭtov, The Stefan problem with surface tension as a limit of the phase field model, Differ. Uravn. 29 (1993), no. 3, 461-471; English transl., Differ. Equ. 29 (1993), no. 3, 395-404. MR 1236334 (94f:35155)
  • 20. P. I. Plotnikov and A. V. Klepacheva, Phase field equations and gradient flows of marginal functions, Sibirsk. Mat. Zh. 42 (2001), no. 3, 651-669; English transl., Siberian Math. J. 42 (2001), no. 3, 551-567. MR 1852242 (2002e:35116)
  • 21. V. E. Fedorov and A. V. Urazaeva, An inverse problem for a class of singular linear operator-differential equations, Trudy Voronezh. Zimneĭ Mat. Shkoly, Voronezh. Gos. Univ., Voronezh, 2004, pp. 16-172. (Russian)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34G25

Retrieve articles in all journals with MSC (2000): 34G25


Additional Information

V. E. Fedorov
Affiliation: Chelyabinsk State University, Ul. Br. Kashirinykh, 454021 Chelyabinsk, Russia
Email: kar@csu.ru

O. A. Ruzakova
Affiliation: Chelyabinsk State University, Ul. Br. Kashirinykh, 454021 Chelyabinsk, Russia
Email: amber@csu.ru

DOI: https://doi.org/10.1090/S1061-0022-09-01065-6
Keywords: Perturbation theory, semigroup, Cauchy problem, Sobolev type equation
Received by editor(s): April 14, 2007
Published electronically: June 2, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society