Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Operator error estimates in the homogenization problem for nonstationary periodic equations
HTML articles powered by AMS MathViewer

by M. Sh. Birman and T. A. Suslina
Translated by: T. A. Suslina
St. Petersburg Math. J. 20 (2009), 873-928
DOI: https://doi.org/10.1090/S1061-0022-09-01077-2
Published electronically: October 1, 2009

Abstract:

Matrix periodic differential operators (DO’s) $\mathcal A=\mathcal A (\mathbf x,\mathbf D)$ in $L_2({\mathbb R}^d;{\mathbb C}^n)$ are considered. The operators are assumed to admit a factorization of the form ${\mathcal A}={\mathcal X}^*{\mathcal X}$, where $\mathcal X$ is a homogeneous first order DO. Let ${\mathcal A}_\varepsilon ={\mathcal A}(\varepsilon ^{-1}{\mathbf x},{\mathbf D})$, $\varepsilon >0$. The behavior of the solutions ${\mathbf u}_\varepsilon ({\mathbf x},\tau )$ of the Cauchy problem for the Schrödinger equation $i\partial _\tau {\mathbf u}_\varepsilon = {\mathcal A}_\varepsilon {\mathbf u}_\varepsilon$, and also the behavior of those for the hyperbolic equation $\partial ^2_\tau {\mathbf u}_\varepsilon = - {\mathcal A}_\varepsilon {\mathbf u}_\varepsilon$, is studied as $\varepsilon \to 0$. Let ${\mathbf u}_0$ be the solution of the corresponding homogenized problem. Estimates of order $\varepsilon$ are obtained for the $L_2({\mathbb R}^d;{\mathbb C}^n)$-norm of the difference ${\mathbf u}_\varepsilon - {\mathbf u}_0$ for a fixed $\tau \in {\mathbb R}$. The estimates are uniform with respect to the norm of initial data in the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$, where $s=3$ in the case of the Schrödinger equation and $s=2$ in the case of the hyperbolic equation. The dependence of the constants in estimates on the time $\tau$ is traced, which makes it possible to obtain qualified error estimates for small $\varepsilon$ and large $|\tau | =O(\varepsilon ^{-\alpha })$ with appropriate $\alpha <1$.
References
  • N. S. Bakhvalov and G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, “Nauka”, Moscow, 1984 (Russian). Matematicheskie zadachi mekhaniki kompozitsionnykh materialov. [Mathematical problems of the mechanics of composite materials]. MR 797571
  • Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • M. Sh. Birman and M. Z. Solomyak, Estimates for the difference of fractional powers of selfadjoint operators under unbounded perturbations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), no. Issled. Lineĭn. Oper. Teorii Funktsiĭ. 18, 120–145, 185 (Russian, with English summary); English transl., J. Soviet Math. 61 (1992), no. 2, 2018–2035. MR 1037767, DOI 10.1007/BF01095665
  • Michael Birman and Tatyana Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71–107. MR 1882692
  • M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639–714. MR 2068790, DOI 10.1090/S1061-0022-04-00827-1
  • M. Sh. Birman and T. A. Suslina, Threshold approximations for the resolvent of a factorized selfadjoint family taking a corrector into account, Algebra i Analiz 17 (2005), no. 5, 69–90 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 5, 745–762. MR 2241423, DOI 10.1090/S1061-0022-06-00927-7
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic elliptic differential operators taking a corrector into account, Algebra i Analiz 17 (2005), no. 6, 1–104 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 6, 897–973. MR 2202045, DOI 10.1090/S1061-0022-06-00935-6
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic differential operators taking a corrector into account. Approximation of solutions in the Sobolev class $H^2(\Bbb R^d)$, Algebra i Analiz 18 (2006), no. 6, 1–130 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 18 (2007), no. 6, 857–955. MR 2307356, DOI 10.1090/S1061-0022-07-00977-6
  • M. Sh. Birman and T. A. Suslina, Averaging of a stationary periodic Maxwell system in the case of constant magnetic permeability, Funktsional. Anal. i Prilozhen. 41 (2007), no. 2, 3–23, 111 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 41 (2007), no. 2, 81–98. MR 2345036, DOI 10.1007/s10688-007-0009-8
  • E. S. Vasilevskaya, Homogenization with corrector for parabolic Cauchy problem with periodic coefficients, Algebra i Analiz 21 (2009), no. 1, 3–60; English transl. in St. Petersburg Math. J. 21 (2010), no. 1.
  • V. V. Zhikov, On some estimates from homogenization theory, Dokl. Akad. Nauk 406 (2006), no. 5, 597–601 (Russian). MR 2347318
  • V. V. Zhikov, S. M. Kozlov, and O. A. Oleĭnik, Usrednenie differentsial′nykh operatorov, “Nauka”, Moscow, 1993 (Russian, with English and Russian summaries). MR 1318242
  • V. V. Zhikov and S. E. Pastukhova, On operator estimates for some problems in homogenization theory, Russ. J. Math. Phys. 12 (2005), no. 4, 515–524. MR 2201316
  • V. V. Zhikov and S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys. 13 (2006), no. 2, 224–237. MR 2262826, DOI 10.1134/S1061920806020087
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
  • S. E. Pastukhova, On some estimates from the homogenization of problems in plasticity theory, Dokl. Akad. Nauk 406 (2006), no. 5, 604–608 (Russian). MR 2347320
  • Enrique Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin-New York, 1980. MR 578345
  • T. A. Suslina, On the averaging of periodic parabolic systems, Funktsional. Anal. i Prilozhen. 38 (2004), no. 4, 86–90 (Russian); English transl., Funct. Anal. Appl. 38 (2004), no. 4, 309–312. MR 2117512, DOI 10.1007/s10688-005-0010-z
  • T. A. Suslina, Homogenization of a periodic parabolic Cauchy problem, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 201–233. MR 2343612, DOI 10.1090/trans2/220/09
  • T. A. Suslina, On the averaging of a periodic Maxwell system, Funktsional. Anal. i Prilozhen. 38 (2004), no. 3, 90–94 (Russian); English transl., Funct. Anal. Appl. 38 (2004), no. 3, 234–237. MR 2095137, DOI 10.1023/B:FAIA.0000042808.32919.b7
  • T. A. Suslina, Averaging of a stationary periodic Maxwell system, Algebra i Analiz 16 (2004), no. 5, 162–244 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 5, 863–922. MR 2106671, DOI 10.1090/S1061-0022-05-00883-6
  • T. A. Suslina, Averaging of the stationary periodic Maxwell system taking a corrector into account, Algebra i Analiz 19 (2007), no. 3, 183–235 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 3, 455–494. MR 2340710, DOI 10.1090/S1061-0022-08-01006-6
  • R. G. Shterenberg, On the structure of the lower edge of the spectrum of a periodic magnetic Schrödinger operator with small magnetic potential, Algebra i Analiz 17 (2005), no. 5, 232–243 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 5, 865–873. MR 2241429, DOI 10.1090/S1061-0022-06-00933-2
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35B27
  • Retrieve articles in all journals with MSC (2000): 35B27
Bibliographic Information
  • M. Sh. Birman
  • Affiliation: Department of Physics, St. Petersburg State University, Ul’yanovskaya 3, Petrodvorets, 198504 St. Petersburg, Russia
  • Email: mbirman@list.ru
  • T. A. Suslina
  • Affiliation: Department of Physics, St. Petersburg State University, Ul’yanovskaya 3, Petrodvorets, 198504 St. Petersburg, Russia
  • Email: suslina@list.ru
  • Received by editor(s): August 10, 2008
  • Published electronically: October 1, 2009
  • Additional Notes: Supported by RFBR (grant no. 08-01-00209-a) and “Scientific Schools” grant no. 816.2008.1.

  • Dedicated: To the memory of Tatyana Petrovna Il′ina
  • © Copyright 2009 American Mathematical Society
  • Journal: St. Petersburg Math. J. 20 (2009), 873-928
  • MSC (2000): Primary 35B27
  • DOI: https://doi.org/10.1090/S1061-0022-09-01077-2
  • MathSciNet review: 2530894