THE CLASSICAL RECIPROCITY LAW FOR POWER RESIDUES AS AN ANALOG OF THE ABELIAN INTEGRAL THEOREM

S. V. VOSTOKOV

ABSTRACT. A formula for power residue symbols is deduced, which can be treated as an analog of the Abelian integral theorem for number fields.

§0. Introduction

It was Leopold Kronecker who first understood that there is a deep relationship between algebraic numbers and algebraic functions. He stated that the prime ideals in the fields of algebraic functions play the same role as the points of Riemann surfaces: the ramification points of a Riemann surface correspond to prime divisors of the discriminant of a number field, etc. The theory of Abelian integrals is the most studied part of the theory of algebraic functions. David Hilbert was apparently the first who initiated an analog of this theory in the fields of algebraic numbers. In particular, he noticed that his reciprocity law for the product of norm residue symbols (Hilbert symbols),

\[\prod_p \left(\frac{\alpha, \beta}{p} \right) = 1, \]

is an analog of Cauchy’s integral theorem (see [6, pp. 367–368]). Igor Shafarevich corrected him: Hilbert’s reciprocity law is an analog of the corollary to Cauchy’s integral theorem that says that the sum of residues of an Abelian differential \(\alpha d\beta \) at all points of a Riemann surface is zero. From this point of view the local norm residue symbol \(\left(\frac{\alpha, \beta}{p} \right) \) is an analog of the Abelian differential \(\alpha d\beta \) at \(p \) (see [3, p. 114]).

To clarify the analogy with a Riemann surface, we consider the field of algebraic functions \(\mathbb{C}(t) \) and a point \(P \) on a Riemann surface lying over the extended complex plane \(\overline{\mathbb{C}} \). Let \(t \) be a local parameter. There are two simple operations in the field \(\mathbb{C}(t) \): taking the derivative \(\partial = d/dt \) and the residue \(\text{res} \left(\sum \alpha_i t^i \right) = \alpha_{-1} \). Then the meromorphic differential \(\omega = f dt \) defined in the vicinity of \(P \) has a finite number of poles, and we have

\[\text{res}(\omega) = 0. \]

On the other hand, only finitely many prime ideals ramify in an algebraic number field, and thus, only finitely many local norm residue symbols are different from 1. Therefore, the product in (1) is well defined, and relation (1) is an analog of relation (1’) (for the details, see the book “The way” by Alexei Parshin, [2, Chapter 1]). Of course, our shallow explanation does not clarify the essence of this. To make the analogy more transparent, we consider the classical reciprocity law for power residues, which relates the product of power residues to a finite product of local norm residue symbols. It is well known

2000 Mathematics Subject Classification. Primary 11R37.
Key words and phrases. Power residue symbol, reciprocity law.
Supported by INTAS, SFBR-478 “Algebraische Strukturen”, and RFBR (grant no. 08-01-00777-a).
that the main problem in the classical reciprocity law is to find an explicit formula for the product of power residue symbols. Class field theory relates this product to a finite product of local norm residue symbols:

\[
\left(\frac{\alpha}{\beta} \right)_n \left(\frac{\beta}{\alpha} \right)_n^{-1} = \prod_{p|n, \infty} \left(\frac{\alpha, \beta}{p} \right)_n
\]

(see [4]). This equation is an analog of the integral theorem stating that an Abelian integral of a differential form on a Riemann surface is equal to the sum of the residues of this form at the singular points. In the present paper, we find an explicit formula for the integral of a differential form on a Riemann surface is equal to the sum of the residues of \(\alpha\) with respect to the basis of \(\mathbb{Z}[\zeta]\) over \(\mathbb{Z}\).

\(\mathbf{X}\) is a set of variables. Class field theory relates this product to a finite \(n\)-th root of 1; \(\zeta := \zeta_n\) is a primitive \(n\)th root of 1;

\(K = \mathbb{Q}(\zeta)\) is a cyclotomic field;

\(n = \prod_{i=1}^{r} p_{i}^{n_{i}}\), \(n_{i} = n/p_{i}^{n_{i}}\), \(a_{i}n_{i} + b_{i}p_{i}^{n_{i}} = 1\), \(a_{i}, b_{i} \in \mathbb{Z}\);

\(\zeta_{i} = \zeta_{p_{i}^{n_{i}}}, \pi_{i} = \zeta_{i} - 1\);

\(\{\pi_{1}^{\alpha_{1}} \cdots \pi_{r}^{\alpha_{r}}, 0 \leq \alpha_{i} < \phi(p_{i}^{n_{i}})\}\) is a basis of the ring \(\mathbb{Z}[\zeta]\) over \(\mathbb{Z}\);

\(X_1, \ldots, X_r\) is a set of variables. For a number \(\alpha\) in \(\mathbb{Z}[\zeta]\), we denote by

\(\mathbf{X} = \mathbf{X}(X_1, \ldots, X_r) \in \mathbb{Z}[X_1, \ldots, X_r]\) the polynomial obtained from the expansion of \(\alpha\) with respect to the basis of \(\mathbb{Z}[\zeta]\). Thus,

\[\alpha(\pi_{1}, \ldots, \pi_{r}) = \alpha.\]

If \((\alpha, n) = 1\), then we assume that the free term of the polynomial \(\alpha\) is prime to \(n\). As usual,

\(\mathbf{X}\) is the residue at \(X_i\).

\textit{§1. Statement of the main theorem}

1.1. The definition of the function \(l_\Delta\). We fix a prime \(p\) and denote by \(A_{(p)}\) (respectively, by \(A_p\)) the polynomial ring \(\mathbb{Z}_{(p)}[X_1, \ldots, X_r-1]\) (respectively, \(\mathbb{Z}_p[X_1, \ldots, X_r-1]\)), where \(\mathbb{Z}_{(p)}\) is the ring of \(p\)-adic integers. Let \(\Delta\) be the operator acting on the Laurent series ring \(A_{(p)}((X))\) as follows:

\[\Delta a = a^\Delta = a, a \in \mathbb{Z}_{(p)};\]

\[\Delta X = X^\Delta := X^p;\]

\[\Delta X_k = X_k^p := (1 + X_k)^p - 1, 1 \leq k \leq r - 1.\]

Remark 1. The definition of the action of \(\Delta\) on \(X_k\) is dictated by the fact that the Frobenius operator \(\sigma\) in the unramified extension \(\mathbb{Q}_p(\zeta_k)/\mathbb{Q}_p\) acts on the prime \(\pi_k\) of this extension as follows: \(\pi_k^\sigma = (1 + \pi_k)^p - 1\). Replacing \(\pi_k\) by the variable \(X_k\), we obtain the action of \(\Delta\).

Let \(M_p\) be the multiplicative monoid of series in \(A_{(p)}((X))\):

\[M_p = \{f_m X^m + f_{m+1}X^{m+1} + \cdots; m \in \mathbb{Z}, f_m, f_{m+1} \in A_{(p)}, f_m(0, 0, \ldots, 0) \in \mathbb{Z}_{(p)}[X]\}.\]

We define a function \(l_\Delta\) on \(M_p\) as follows:

\[l_\Delta(f) = \frac{1}{p} \log \frac{f^p}{f^\Delta}, f \in M_p.\]

Proposition 1. The function \(l_\Delta\) is well defined and gives rise to a homomorphism from the multiplicative monoid \(M_p\) to the additive group of \(A_p[[X]]\).
Proof. Let

\[f = f_m X^m + f_{m+1} X^{m+1} + \cdots \in M_p. \]

Then \(c = f_m (0, 0, \ldots, 0) \) is invertible in \(\mathbb{Z}_p \), \(f_m = c(1 + g) \), and the free term of the polynomial \(g \) belonging to \(A_p \) is zero. Therefore,

\[f = cX^m (1 + g + g_1 X + g_2 X^2 + \cdots), \]

where

\[g_i = c^{-1} f_{m+i} \in A_p. \]

This fact and the definition of \(l_\Delta \) show that

\[l_\Delta(f) = l_\Delta(c) + l_\Delta(X^m) + l_\Delta(1 + h), \]

where \(h = g + g_1 X + \cdots \in A_p[[X]] \) and the free term of \(g \) is zero. Next, \(l_\Delta(c) = \frac{1}{p} \log c^{p-1} \in \mathbb{Z}_p \), because \(c^{p-1} = 1 + pc' \) and \(c' \in \mathbb{Z}_p \). Moreover, \(l_\Delta(X^m) = 0 \). The proof of the statement about the series \(l_\Delta(1 + h) \) can be obtained in the same way as the proof of Lemma 2 in \([1] \). \(\square \)

1.2. Now, let \(p \) be a prime divisor of \(n = p^{r_1}_1 \cdots p^{r_r}_r \), say, \(p = p_r \). Let \(n = n_r p^m \), where \(m := m_r \) and \((n_r, p) = 1 \). We denote by \(A_p[[X]] \) the following two-dimensional ring of series:

\[A_p\{\{X\}\} = \left\{ \sum_{k \in \mathbb{Z}} f_k X^k, \quad f_k \in A_p, \quad f_k \xrightarrow{k \to -\infty} 0 \text{ in the } p\text{-adic norm} \right\}. \]

Let \(f(X) \) be a series from the ring \(A_p[[X]] \), and let \(g(X) \) be an invertible series from \(A_p\{\{X\}\} \).

Lemma 1. Let

\[c(X_1, \ldots, X_{r-1}) = \text{res}_X f(X)/g(X) \mod p^m A_p. \]

Then \(c(X_1, \ldots, X_{r-1}) \in \mathbb{Z}[X_1, \ldots, X_{r-1}] \), and the trace

\[\text{Tr}_r(c(\pi_1, \ldots, \pi_{r-1})) \in \mathbb{Z} \]

is well defined, where \(\text{Tr}_r : \mathbb{Q}(\zeta_{n_r}) \to \mathbb{Q}, \quad \pi_i = \zeta_{p^m_i}^{-1} - 1. \)

Proof. The residue \(\text{res}_X f(X)/g(X) \) is a polynomial in \(\mathbb{Z}_p[\{X_1, \ldots, X_{r-1}\}] \). Therefore, \(c(X_1, \ldots, X_{r-1}) \in \mathbb{Z}[X_1, \ldots, X_{r-1}] \), and we have \(c(\pi_1, \ldots, \pi_{r-1}) \in \mathbb{Z}[\zeta_{n_r}]. \) \(\square \)

1.3. Let \(p_i \) be a prime divisor of \(n \), and let \(l_i := l_{\Delta_i} \) be a function as in Subsection 1.1 for the operator \(\Delta = \Delta_i \) corresponding to the prime \(p := p_i \), i.e.,

\[\Delta_i(X_k) = \begin{cases} X_i^p, & k = i, \\ (1 + X_k)^p - 1, & k \neq i, \end{cases} \]

\[l_i(f) := \frac{1}{p_i} \log f^{p_i}/f^{\Delta_i}, \]

with values in the additive group of \(A_{p_i}[[X_i]] \), where

\[A_{p_i} = \mathbb{Z}_{p_i}[X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_r]. \]

As before, we assume that for each element \(\alpha \) of \(\mathbb{Z}[\zeta] \) with \((\alpha, n) = 1 \), a polynomial \(\alpha := \alpha(X_1, \ldots, X_r) \in \mathbb{Z}[X_1, \ldots, X_r] \) is given such that \(\alpha(\pi_1, \ldots, \pi_r) = \alpha \) and the free term of \(\alpha(0, \ldots, 0) \) is prime to \(n \).

For \(\alpha, \beta \in \mathbb{Z}[\zeta], \quad (\alpha, n) = 1, \quad (\beta, n) = 1 \), we consider the series

\[(2) \quad \Phi_{i}(\alpha, \beta) = l_i(\alpha) \frac{\partial}{\partial X_i} l_i(\beta) - l_i(\alpha) \beta^{-1} \frac{\partial}{\partial X_i} \beta + l_i(\beta) \alpha^{-1} \frac{\partial}{\partial X_i} (\alpha). \]

By Proposition 1, the series \(\Phi_{i}(\alpha, \beta) \) belongs to \(A_{p_i}[[X_i]] \).
Statement of the main theorem. Let $K = \mathbb{Q}(\zeta)$ be a cyclotomic field and $\zeta := \zeta_n$, where n is an odd integer, and let $\alpha, \beta \in \mathbb{Z}[\zeta]$ be relatively prime and prime to n. Then the nth power residue symbol $(\frac{\alpha}{\beta})_n$ is defined.

Suppose $n = p_1^{m_1} \cdots p_r^{m_r}$, $\zeta_i := \zeta_{p_i^{m_i}}$, $\pi_i = \zeta_i - 1$.

Theorem 1. The product of power residue symbols obeys the following relation:

$$\left(\frac{\alpha}{\beta}\right)_n \left(\frac{\beta}{\alpha}\right)_n^{-1} = \zeta^{\sum_{i=1}^r \text{res}_i S_i},$$

where

$$S_i = n_i b_i \text{Tr}_i \left(\frac{\Phi_i(\alpha, \beta)}{\zeta_{p_i^{m_i}} - 1}\right)\bigg|_{x_k = \pi_k}$$

(for the notation, see §0).

Remark 2. Formula (3) is an analog of the Abelian integral theorem in number fields. The exponent on the right-hand side of this formula involves the sum of the residues of the differential forms Φ_i at the “singular” points, which are the denominators $\zeta_{p_i^{m_i}} - 1$, because $\zeta_{p_i^{m_i}} - 1 = 0$. The remaining problem is to properly define an analog of the integral, which should correspond to the product of power residue symbols

$$\left(\frac{\alpha}{\beta}\right)_n \left(\frac{\beta}{\alpha}\right)_n^{-1}.$$

If, for example,

$$n = p_1 \cdots p_r,$$

then, as will be shown below, the differential forms Φ_i turn into simple series, and the general differential form will be $\Phi = \log \beta \log \alpha$. Therefore, the left-hand side of (3) becomes

$$\int (\log \beta) d\log \alpha / (\zeta^n - 1).$$

Proposition 2. All calculations in formula (3) are done in the field $K = \mathbb{Q}(\zeta)$, and the right-hand side is well defined.

Proof. It is easily seen that

$$\text{res}_i S_i = n_i b_i \text{Tr}_i \left(\text{res}_i(\Phi_i(\alpha, \beta)/\zeta_{p_i^{m_i}} - 1)\right)\bigg|_{x_k = \pi_k}.$$

Next, the polynomial $\zeta_{p_i^{m_i}} - 1$ is an invertible element of the ring $A_{p_i}\{X_i\}$. By Lemma 1, we have

$$a = \text{Tr}_i c(\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_r) \in \mathbb{Z},$$

where $c(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_r) = \text{res}_i \Phi_i / (\zeta_{p_i^{m_i}} - 1)$ mod $p_i^{m_i} A_{p_i}$, and so $\zeta^{n_i b_i a}$ is a $p_i^{m_i}$th root of unity. Therefore, the ith factor on the right-hand side of formula (3) is well defined; it is $\zeta^{\text{res}_i S_i}$. Here the calculation is done in the field $K = \mathbb{Q}(\zeta)$.

§2. Local symbols

2.1. Let $K = \mathbb{Q}(\zeta_n)$, let p be a prime divisor of n, and let p be a prime ideal in K dividing (p). Suppose $F = K_p = \mathbb{Q}_p(\zeta_n)$ is the completion of K with respect to the ideal p. Let $n = n_1 p^{m_1}$ and $T = \mathbb{Q}_p(\zeta_{n_1})$. Then F/T is a totally ramified extension and the extension T/\mathbb{Q}_p is unramified.
Lemma 2. Let $kn_1 + lp^m = 1$, $k, l \in \mathbb{Z}$, and let α, β be elements of F^* such that $(\alpha \beta, n) = 1$. Then, for the local norm residue symbol, we have

$$\left(\frac{\alpha \beta}{p} \right)_n = \left(\frac{\alpha \beta}{p} \right)_{n_1}^{k}.$$

Proof. The basic properties of the norm residue symbol imply

$$\left(\frac{\alpha \beta}{p} \right)_n = \left(\frac{\alpha \beta}{p} \right)^{l} \left(\frac{\alpha \beta}{p} \right)^{k}$$

(see, e.g., [7, Chapter IV, 5]). The first symbol on the right-hand side of the above relation is tame because $p \not| n_1$. Therefore, the well-known formula for the tame symbol yields

$$\left(\frac{\alpha \beta}{p} \right)_{n_1} \equiv (-1)^{v(\alpha)v(\beta)} \alpha^{-v(\beta)} \beta^{v(\alpha)} \mod p,$$

where v is the valuation in F, and using the fact that α and β are units in F because $(\alpha \beta, n) = 1$ and $p \mid n$, we obtain $v(\alpha) = v(\beta) = 0$, whence $\left(\frac{\alpha \beta}{p} \right)_{n_1} = 1$.

Let $\pi = \zeta_n - 1$. For an element $\alpha \in F^*$, we write $\alpha(X) := \alpha(X) \in \mathfrak{o}_T[[X]]$, where \mathfrak{o}_T is the ring of integers of the field T, if $\alpha(X) = \alpha$. Let

$$l(\alpha) = \frac{1}{p} \log \frac{\alpha^p}{\alpha^\Delta},$$

where $\alpha^\Delta := (\sum a_i X_i^\Delta) = \sum (\text{Frob } a_i) X_i^{p_i}$, $a_i \in \mathfrak{o}_T$, and Frob is the Frobenius automorphism in T (for the details, see [1]).

Lemma 3. If $\alpha, \beta \in F^*$, $(\alpha \beta, n) = 1$, $p \mid n = n_1p^m$, and $kn_1 + lp^m = 1$, then the following explicit formula is valid:

$$\left(\frac{\alpha \beta}{p} \right)_n = \zeta_n^{\text{Tr} \left(\text{res}_X \Phi(\alpha, \beta) / (C^\mu_{p^m} - 1) \right)},$$

where $\Phi := \Phi_{T/\mathbb{Q}_p}$ and

$$\Phi(\alpha, \beta) = l(\alpha) \frac{\partial}{\partial X} l(\beta) - l(\alpha) \beta^{-1} \frac{\partial}{\partial X} \beta + l(\beta) \alpha^{-1} \frac{\partial}{\partial X} \alpha.$$

Corollary. If in Lemma 3 we have $n = n_1p$ and $(n_1, p) = 1$, then the series $\Phi(\alpha, \beta)$ for the units α and β has a simpler form:

$$\Phi(\alpha, \beta) = \log \beta \frac{\partial}{\partial X} \log \alpha.$$

(see [7, Chapter VII, 5]).

The proof of Lemma 3 follows from Lemma 2 and the explicit formula for the norm residue symbol (see [1]).
2.2. Suppose \(n = p_1^{m_1} \cdots p_r^{m_r} \), \(\zeta_i := \zeta_p^{m_i} \), and \(\pi_i = \zeta_i - 1 \). We fix \(p \) with \(p \mid n \), say, \(p := p_1 \). Then \(n = n_1 p^{m_1} \), where \(m = m_1 \) and \((n_1, p) = 1 \); the extension \(T = Q_p(\zeta_n) \) is unramified over \(Q_p \), and the Frobenius automorphism \(\sigma \) in \(T/Q_p \) takes the root \(\zeta_i \) to \(\zeta_i^p \); thus, \(\pi_i^p = (1 + \pi_i)^p - 1 \), \(i = 2, 3, \ldots, r \).

Let \(\alpha \) be an element of the ring \(Z[\zeta_n] \), and let \(\alpha(X_2, X_3, \ldots, X_r) \) be a polynomial in \(Z[X_2, X_3, \ldots, X_r] \) such that \(\alpha(X_2, \pi_3, \ldots, \pi_r) = a \). Let \(\Delta_1 \) be the operator on the ring \(Z[X_2, X_3, \ldots, X_r] \) acting as in Subsection 1.1, i.e.,

\[\Delta_1 X_i = X_i^{\Delta_i} := (1 + X_i)^p - 1, \quad i = 2, 3, \ldots, r. \]

We obtain

\[\alpha(X_2, X_3, \ldots, X_r)^{\Delta_1} \bigg|_{X_i = \pi_i} = a^\sigma. \]

Next, for an element \(\alpha \) of \(Z[\zeta_n] \), we take an arbitrary series \(\alpha := \alpha(X) \) in the ring \(A_p((X)) \), where \(A_p = Z_p[X_2, X_3, \ldots, X_r] \), with the property

\[\alpha(X) \big|_{X = \pi_i, 2 \leq i \leq r} = \alpha. \]

As in Subsection 1.3, we define an operator \(\Delta_1 \) on the ring \(A_p \) as follows: \(\Delta_1 X := X^{\Delta_1} := X^p \), \(\Delta_1 X_i = X_i^{\Delta_i} = (1 + X_i)^p - 1 \), \(2 \leq i \leq r \), and \(\Delta_1 \) is the identity on \(Z_p \).

Then \(\alpha(X)^{\Delta_1} \big|_{X_i = \pi_i, 2 \leq i \leq r} = \alpha(X)^\Delta \), where \(\alpha(X) \) is a series from Subsection 2.1 for \(\alpha \).

Therefore, the function \(\tilde{l}(\alpha) \) as in \((3')\) coincides with the function

\[l_{\Delta_1}(\alpha) \big|_{X_i = \pi_i, 2 \leq i \leq r}; \]

and therefore, the series \(\Phi(\alpha, \beta) \) occurring in \((4)\) coincides with the series

\[\Phi_1(\alpha, \beta) \big|_{X_i = \pi_i, 2 \leq i \leq r} \]

occurring in \((2)\).

2.3. Let \(Z \) be the decomposition field of the ideal \((p) \) in \(Q(\zeta_n) \), where \((p) = p_1 \cdots p_d \) and \(d = (Z : Q) \). Let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_d \) be the prime ideals in \(Q(\zeta_n) \) lying over \(p_1, \ldots, p_d \), respectively,

\[\text{Gal}(Z/Q) = \{ \sigma_1 = \text{id}, \sigma_2, \ldots, \sigma_d \}. \]

Let

\[\mathfrak{p}_i = \mathfrak{p}_i^{\sigma_i}, \quad 1 \leq i \leq d. \]

We have a tower of fields

\[
\begin{array}{ccccccc}
Q & \longrightarrow & Z & \longrightarrow & Q(\zeta_n) & \longrightarrow & Q(\zeta_n) = K \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
Q & \longrightarrow & Q_p & \longrightarrow & T = Q_p(\zeta_n) & \longrightarrow & F = Q_p(\zeta_n),
\end{array}
\]

where \(Q_p \) and \(T \) are the completions of \(Z \) and \(Q(\zeta_n) \) with respect to any of the ideals \(\mathfrak{p}_i, 1 \leq i \leq d \), and \(F \) is the completion of \(K \) with respect to \(\mathfrak{p}_i \) for any \(i \). We have

\[
\begin{align*}
\text{Gal}(F/Q_p) & \cong \text{Gal}(K/Z), \\
\text{Gal}(F/T) & \cong \text{Gal}(K/Q(\zeta_n)), \\
\text{Gal}(T/Q_p) & \cong \text{Gal}(Q(\zeta_n))/Z.
\end{align*}
\]

Let \(\text{tr} \) be the trace operator in \(Q(\zeta_n)/Z \).
Proposition 3. Suppose $\alpha, \beta \in \mathbb{Z}[\zeta_n]$ and $(\alpha \beta, n) = 1$. Then

\begin{equation}
\left(\frac{\alpha, \beta}{P_1} \right)_{p^m} = \zeta_n^s,
\end{equation}

where

\[s = \text{tr} \left(\text{res}_X \Phi_1(\alpha, \beta) / (\zeta_{1,1}^{p^m} - 1) \right) \bigg|_{X_i = \pi_i, 2 \leq i \leq r} \]

(Φ_1 is as in (2)).

Proof. We use the formula from Lemma 2 for $n = p^m$ and observe that

\[\zeta_{1,1}^{p^m} - 1 = \zeta_{1,1}^{p^m} - 1 = (1 + X)^{p^m} - 1. \]

Then the above result (see Subsection 2.2) implies that the series

\[\Phi_1(\alpha, \beta) / (\zeta_{1,1}^{p^m} - 1) \big|_{X_i = \pi_i, 2 \leq i \leq r} \]

coincides with the series

\[\Phi(\alpha, \beta) / (\zeta_1^{p^m} - 1), \]

whence

\[c = \left(\text{res}_X \Phi_1(\alpha, \beta) / (\zeta_{1,1}^{p^m} - 1) \right) \bigg|_{X_i = \pi_i, 2 \leq i \leq r} = \text{res}_X \Phi_1(\alpha, \beta) / (\zeta_1^{p^m} - 1). \]

Since the element $c_m = c \mod p^m$ belongs to the ring

\[\mathbb{Z}[\zeta_n_1] \to \mathbb{Z}_p[\zeta_n_1] \]

and $\text{Gal}(\mathbb{Q}(\zeta_n_1)/\mathbb{Z}) \cong \text{Gal}(\mathbb{Q}_p(\zeta_n_1)/\mathbb{Q}_p)$, we see that

\[\text{tr} c_m = \text{tr}_{\mathbb{Q}(\zeta_n_1) / \mathbb{Z}} c_m = \text{Tr}_{\mathbb{Q} / \mathbb{Q}_p} c_m, \]

and therefore, by Lemma 3, we obtain (5). \qed

Proposition 4. As in the preceding proposition, let $c_m = c \mod p^m \in \mathbb{Z}[\zeta_n_1]$, where

\[c = \left(\text{res}_X \Phi_1(\alpha, \beta) / (\zeta_{1,1}^{p^m} - 1) \right) \bigg|_{X_i = \pi_i, 2 \leq i \leq r}, \quad \text{Tr} = \text{Tr}_{\mathbb{Q}(\zeta_n_1) / \mathbb{Q}}. \]

Then

\begin{equation}
\left(\frac{\alpha, \beta}{P_1} \right)_{p^m} \cdots \left(\frac{\alpha, \beta}{P_d} \right)_{p^m} = \zeta_1^{s_1 \text{Tr} c_m}.
\end{equation}

Proof. The properties of the norm residue yield

\[\left(\frac{\alpha, \beta}{P_i} \right)_{p^m} = \left(\frac{\alpha, \beta}{P_1} \right)^{\sigma_i}_{p^m}, \quad 1 \leq i \leq d. \]

Consequently,

\[\prod_{i=1}^d \left(\frac{\alpha, \beta}{P_i} \right)_{p^m} = \zeta_1^{\sum_{i=1}^d (\text{tr} c_m)^{\sigma_i}}. \]

However,

\[\sum_{i=1}^d (\text{tr} c_m)^{\sigma_i} = \text{Tr}_{\mathbb{Q} / \mathbb{Z}}(\text{tr} c_m) = \text{Tr}_{\mathbb{Q}(\zeta_n_1) / \mathbb{Q}} c_m = \text{Tr} c_m. \] \qed
Proof of Theorem 1. Let $K = \mathbb{Q}(\zeta_n)$, where $n = p_1^{n_1} \cdots p_r^{n_r}$ is an odd integer. Let $n = n_i p_i^{m_i}$, and let $a_i n_i + b_i p_i^{m_i} = 1$. We assume that $\alpha, \beta \in \mathbb{Z}[\zeta_n]$ and α and β are relatively prime and prime to n. Consider the reciprocity law for nth power residues in K:

$$
\left(\frac{\alpha}{\beta} \right)_n \left(\frac{\beta}{\alpha} \right)_n^{-1} = \prod_{\mathfrak{P}|n} \left(\frac{\alpha, \beta}{\mathfrak{P}} \right)_n.
$$

We split the right-hand side into r factors,

$$
A_i = \prod_{\mathfrak{P}_{ij}|p_i} \frac{\alpha, \beta}{\mathfrak{P}_{ij}}^{a_i} \prod_{\mathfrak{P}_{ij}^{j}}^{n_i} p_i^{m_i},
$$

where $j = 1, 2, \ldots, d_i$ and d_i is the degree of the decomposition field of the ideal (p_i) in $\mathbb{Q}(\zeta_n)$ over \mathbb{Q}. By Lemma 2, we have

$$
\left(\frac{\alpha, \beta}{\mathfrak{P}_{ij}} \right)_n = \left(\frac{\alpha, \beta}{\mathfrak{P}_{ij}} \right)^{a_i} p_i^{m_i}.
$$

Proposition 3 implies that

$$
A_i = \zeta_n^{a_i \pi_i c_{m_i}} = \zeta_n^{a_i n_i \pi_i c_{m_i}},
$$

where

$$
c_{m_i} = \left(\text{res}_{X_i} \Phi_i(\alpha, \beta)/(\zeta_{p_i^{m_i}} - 1) \right)_{X_i = \pi_k, k \neq i},
$$

and $\pi_i = \text{Tr}_i \mathbb{Q}(\zeta_n)/\mathbb{Q}$. Now, to obtain formula (3) it remains to observe that the trace operator Tr_i commutes with res_{X_i}. □

References

Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii Prospekt 28, Petrodvorets, 198504 St. Petersburg, Russia

E-mail address: sergei.vostokov@gmail.com

Received 14/ APR/ 2008

Translated by B. M. BEKKER