Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Overgroups of F$ _4$ in E$ _6$ over commutative rings


Author: A. Yu. Luzgarev
Translated by: the author
Original publication: Algebra i Analiz, tom 20 (2008), nomer 6.
Journal: St. Petersburg Math. J. 20 (2009), 955-981
MSC (2000): Primary 20H25
DOI: https://doi.org/10.1090/S1061-0022-09-01080-2
Published electronically: October 2, 2009
MathSciNet review: 2530897
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Overgroups of the elementary Chevalley group of type $ \mathrm{F}_4$ in the Chevalley group of type $ \mathrm{E}_6$ over an arbitrary commutative ring are described.


References [Enhancements On Off] (What's this?)

  • 1. A. Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (Inst. Adv. Study, Princeton, NJ, 1968/1969), Lecture Notes in Math., vol. 131, Springer-Verlag, Berlin-New York, 1970, pp. 1-55. MR 0258838 (41:3484)
  • 2. N. Bourbaki, Lie groups and Lie algebras. Ch. 4-6, Springer-Verlag, Berlin, 2000. MR 1890629 (2003a:17001)
  • 3. N. A. Vavilov, Weight elements of Chevalley groups, Algebra i Analiz 20 (2008), no. 1, 34-85; English transl., St. Petersburg Math. J. 20 (2009), no. 1, 23-57. MR 2411968 (2009c:20086)
  • 4. N. A. Vavilov and M. R. Gavrilovich, An $ \mathrm A_2$-proof of structure theorems for Chevalley groups of types $ \mathrm E_6$ and $ \mathrm E_7$, Algebra i Analiz 16 (2004), no. 4, 54-87; English transl., St. Petersburg Math. J. 16 (2005), no. 4, 649-672. MR 2090851 (2005m:20115)
  • 5. N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, The structure of Chevalley groups: A proof from the Book, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), 36-76; English transl., J. Math. Sci. (N. Y.) 140 (2007), no. 5, 626-645. MR 2253566 (2007k:20108)
  • 6. N. A. Vavilov and A. Yu. Luzgarev, Normalizer of the Chevalley group of type $ \mathrm E_6$, Algebra i Analiz 19 (2007), no. 5, 37-64; English transl., St. Petersburg Math. J. 19 (2008), no. 5, 699-718. MR 2381940 (2008m:20077)
  • 7. N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, A Chevalley group of type $ \mathrm E_6$ in the $ 27$-dimensional representation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 338 (2006), 5-68; English transl., J. Math. Sci. (N. Y.) 145 (2007), no. 1, 4697-4736. MR 2354606 (2009b:20022)
  • 8. N. A. Vavilov and S. I Nikolenko, $ \mathrm A_2$-proof of structure theorems for Chevalley groups of type $ \mathrm F_4$, Algebra i Analiz 20 (2008), no. 4, 27-63; English transl. in St. Petersburg Math. J. 20 (2009), no. 4. MR 2473743
  • 9. N. A. Vavilov and V. A. Petrov, On overgroups of $ \mathrm E\mathrm O(2l,R)$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 272 (2000), 68-85; English transl., J. Math. Sci. (N. Y.) 116 (2003), no. 1, 2917-2925. MR 1811793 (2001m:20078)
  • 10. -, On overgroups of $ \mathrm{Ep}(2l,R)$, Algebra i Analiz 15 (2003), no. 4, 72-114; English transl., St. Petersburg Math. J. 15 (2004), no. 4, 515-543. MR 2068980 (2005d:20086)
  • 11. -, On overgroups $ \mathrm E\mathrm O(n,R)$, Algebra i Analiz 19 (2007), no. 2, 10-51; English transl., St. Petersburg Math. J. 19 (2008), no. 2, 167-195. MR 2333895 (2008d:20094)
  • 12. A. Yu. Luzgarev, On overgroups $ E(\mathrm E_6,R)$ and $ E(\mathrm E_7,R)$ in minimal representations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), 216-243; English transl., J. Math. Sci. (N. Y.) 134 (2006), no. 6, 2558-2571. MR 2117858 (2006k:20098)
  • 13. R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968. MR 0466335 (57:6215)
  • 14. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), 14-66. MR 0073602 (17:457c)
  • 15. E. Abe, Chevalley groups over commutative rings, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, pp. 1-23. MR 0999577 (91a:20047)
  • 16. E. Abe and K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. (2) 28 (1976), no. 2, 185-198. MR 0439947 (55:12828)
  • 17. M. Aschbacher, The $ 27$-dimensional module for $ \mathrm E_6$. I-IV, Invent. Math. 89 (1987), no. 1, 159-195; J. London Math. Soc. 37 (1988), 275-293; Trans. Amer. Math. Soc. 321 (1990), 45-84; J. Algebra 131 (1990), 23-39. MR 0892190 (88h:20045); MR 0928524 (89a:20041); MR 0986684 (90m:20044); MR 1054997 (91f:20049)
  • 18. -, Some multilinear forms with large isometry groups, Geom. Dedicata 25 (1988), no. 1-3, 417-465. MR 0925846 (89c:20067)
  • 19. A. Bak, Nonabelian $ K$-theory: The nilpotent class of $ K_1$ and general stability, $ K$-Theory 4 (1991), 363-397. MR 1115826 (92g:19001)
  • 20. A. Bak and N. Vavilov, Normality for elementary subgroup functors, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 35-47. MR 1329456 (96d:20046)
  • 21. S. Berman and R. Moody, Extensions of Chevalley groups, Israel J. Math. 22 (1975), no. 1, 42-51. MR 0390077 (52:10903)
  • 22. R. H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra 59 (1979), no. 1, 202-221. MR 0541675 (81c:20028)
  • 23. -, On the maximality of the orthogonal groups in the symplectic groups in characteristic two, Math. Z. 172 (1980), no. 3, 203-212. MR 0581439 (81h:20060)
  • 24. -, Maximal subgroups of $ \mathrm{GL}_{2n}(K)$, $ \mathrm{SL}_{2n}(K)$, $ \mathrm{PGL}_{2n}(K)$, $ \mathrm{PSL}_{2n}(K)$ associated with symplectic polarities, J. Algebra 66 (1980), no. 1, 1-11. MR 0591244 (81j:20061)
  • 25. R. Hazrat, Dimension theory and nonstable $ K_1$ of quadratic modules, $ K$-Theory 27 (2002), no. 4, 293-328. MR 1962906 (2004a:19005)
  • 26. R. Hazrat and N. A. Vavilov, $ {K}_1$ of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179 (2003), 99-116. MR 1958377 (2004i:20081)
  • 27. Hong You, Overgroups of symplectic group in linear group over commutative rings, J. Algebra 282 (2004), no. 1, 23-32. MR 2095570 (2005g:20076)
  • 28. -, Overgroups of classical groups over commutative rings in linear group, Sci. China Ser. A 49 (2006), no. 5, 626-638. MR 2250893 (2007d:20087)
  • 29. O. H. King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra 96 (1985), no. 1, 178-193. MR 0808847 (87b:20057)
  • 30. -, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata 19 (1985), no. 3, 297-310. MR 0815209 (87c:20081)
  • 31. Shang Zhi  Li, Overgroups of $ \mathrm{SU}(n,K,f)$ or $ \Omega(n,K,Q)$ in $ \mathrm{GL}(n,K)$, Geom. Dedicata 33 (1990), no. 3, 241-250. MR 1050412 (91g:11038)
  • 32. -, Overgroups of a unitary group in $ \mathrm{GL}(2,K)$, J. Algebra 149 (1992), no. 2, 275-286. MR 1172429 (93e:20067)
  • 33. -, Overgroups in $ \mathrm{GL}(n,F)$ of a classical group over a subfield of $ F$, Algebra Colloq. 1 (1994), no. 4, 335-346. MR 1301157 (95i:20068)
  • 34. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. $ (4)$ 2 (1969), no. 1, 1-62. MR 0240214 (39:1566)
  • 35. V. A. Petrov, Overgroups of unitary groups, $ K$-Theory 29 (2003), no. 3, 147-174. MR 2028500 (2004m:20094)
  • 36. M. R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), no. 4, 965-1004. MR 0322073 (48:437)
  • 37. G. Taddei, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, Applications of Algebraic $ K$-Theory to Algebraic Geometry and Number Theory, Part II (Boulder, Colo., 1983), Contemp. Math., vol.  55, Amer. Math. Soc., Providence, RI, 1986, pp. 693-710. MR 0862660 (88a:20054)
  • 38. J. Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A 283 (1976), 693-695. MR 0424966 (54:12924)
  • 39. L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. (2) 38 (1986), no. 2, 219-230. MR 0843808 (87k:20081)
  • 40. N. A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 219-335. MR 1150262 (92k:20090)
  • 41. -, A third look at weight diagrams, Rend. Sem. Mat. Univ. Padova 104 (2000), 201-250. MR 1809357 (2001i:20099)
  • 42. -, An $ \mathrm A_3$-proof of structure theorems for Chevalley groups of types $ \mathrm E_6$ and $ \mathrm E_7$, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1283-1298. MR 2355697

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 20H25

Retrieve articles in all journals with MSC (2000): 20H25


Additional Information

A. Yu. Luzgarev
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, Petrodvorets, 198504 St. Petersburg, Russia
Email: mahalex@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-09-01080-2
Keywords: Chevalley group, exceptional groups over commutative rings, localization-completion method
Received by editor(s): February 12, 2007
Published electronically: October 2, 2009
Additional Notes: Supported by the joint program “Mikhail Lomonosov” of DAAD and the Russian Ministry of Education, and by INTAS (grant no. 03-51-3251)
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society