ON θ-CENTRALIZERS OF SEMIPRIME RINGS (II)

M. N. DAIF AND M. S. TAMMAM EL-SAYIAD

ABSTRACT. The following result is proved: Let R be a 2-torsion free semiprime ring, and let $T : R \to R$ be an additive mapping, related to a surjective homomorphism $\theta : R \to R$, such that $2T(x^2) = T(x)\theta(x) + \theta(x)T(x)$ for all $x \in R$. Then T is both a left and a right θ-centralizer.

§1. Introduction

This paper has been motivated by the work of Brešar [5], Vukman [10], and Zalar [11]. Throughout, R will represent an associative ring with center $Z(R)$. Recall that R is prime if $aRb = (0)$ implies $a = 0$ or $b = 0$, and R is semiprime if $aRa = (0)$ implies $a = 0$. A ring R is 2-torsion free if $2x = 0$, $x \in R$ implies $x = 0$. As usual, the commutator $xy - yx$ will be denoted by $[x, y]$. We shall use the commutator identities $[x, yz] = [x, y]z + y[x, z]$ and $[xy, z] = [x, z]y + x[y, z]$. An additive mapping $D : R \to R$ is called a derivation if $D(xy) = D(x)y + xD(y)$ for all pairs $x, y \in R$; D is called a Jordan derivation if $D(x^2) = D(x)x + xD(x)$ for all $x \in R$. A derivation D is inner if there exists an element $a \in R$ such that $D(x) = [a, x]$ for all $x \in R$. An additive mapping $D : R \to R$ related to a map $\theta : R \to R$ is called a (θ, θ)-derivation if $D(xy) = D(x)\theta(y) + \theta(x)D(y)$ for all pairs $x, y \in R$; D is called a Jordan (θ, θ)-derivation if $D(x^2) = D(x)x + \theta(x)D(x)$ for all $x \in R$. A (θ, θ)-derivation D is inner if there exists $a \in R$ such that $D(x) = [a, \theta(x)]$ for all $x \in R$. It is clear that if θ is the identity map on R, then every (θ, θ)-derivation is an ordinary derivation.

Every derivation is a Jordan derivation; the converse is in general not true. A classical result of Herstein [7] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. A brief proof of Herstein’s result can be found in [2]. Cusack [6] generalized Herstein’s result to 2-torsion free semiprime rings (see also [4] for an alternative proof). Zalar [11] gave the following definition: An additive mapping $T : R \to R$ is called a left (right) centralizer if $T(xy) = T(x)y$ ($T(xy) = xT(y)$) for all $x, y \in R$. If R is a ring with involution $*$, then every additive mapping $E : R \to R$ that satisfies $E(x^2) = E(x)x^* + xE(x)$ for all $x \in R$ is called a Jordan $*$-derivation. These mappings are closely related to the question of the representability of quadratic forms by bilinear forms. Some algebraic properties of Jordan $*$-derivations were considered in [8], where further references can be found. For quadratic forms, see [9].

If the product in R is given by $x \circ y = xy + yx$, then a Jordan derivation is an additive mapping D satisfying $D(x \circ y) = D(x) \circ y + x \circ D(y)$ for all $x, y \in R$; a Jordan homomorphism is an additive mapping A satisfying $A(x \circ y) = A(x) \circ A(y)$ for all $x, y \in R$. Zalar [11] defined the Jordan centralizer to be an additive mapping T such that $T(x \circ y) = T(x) \circ y = x \circ T(y)$. Since the product \circ is commutative, there is no difference between the left and the right Jordan centralizers.

2000 Mathematics Subject Classification. Primary 16N60.

Key words and phrases. Prime ring, semiprime ring, left(right) centralizer, left(right) θ-centralizer, left(right) Jordan θ-centralizer, derivation, Jordan derivation.
We follow Zalar [11] and call T a centralizer if T is both a left and a right centralizer. If $a \in R$, then $L_a(x) = ax$ is a left centralizer and $R_a(x) = xa$ is a right centralizer. An additive mapping $T : R \to R$ is called a left (right) Jordan centralizer if $T(x^2) = T(x)x$ ($T(x^2) = xT(x)$). Following the ideas of [4], Zalar [11] proved that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a (right) centralizer. In [1], the definition of a θ-centralizer was introduced. This is a generalization of the definition of a centralizer. Albash [1] followed the same direction as Zalar [11] and proved his result with this definition. In our paper, Vukman’s result [10] will be proved for the θ-centralizer case under some additional conditions.

Definition 1.1 ([1]). An additive mapping $T : R \to R$ is called a left (right) θ-centralizer associated with a function $\theta : R \to R$ if for all $x, y \in R$ we have

\[T(xy) = T(x)\theta(y) \quad (T(xy) = \theta(x)T(y)). \]

T is called a left (right) Jordan θ-centralizer if for all $x, y \in R$ we have

\[T(x^2) = T(x)\theta(x) \quad (T(x^2) = \theta(x)T(x)). \]

It is clear that if $T : R \to R$ is an additive mapping associated with a homomorphism $\theta : R \to R$, if $L_a(x) = a\theta(x)$ and $R_a(x) = \theta(x)a$ for all $x \in R$ and $a \in R$, then L_a is a left θ-centralizer and R_a is a right θ-centralizer.

Remark 1.1. Clearly, every centralizer is a special case of a θ-centralizer with $\theta = I_R$, and every Jordan centralizer is a special case of a Jordan θ-centralizer with $\theta = I_R$.

If $T : R \to R$ is a θ-centralizer associated with a function $\theta : R \to R$, where R is an arbitrary ring, then T satisfies the relation

\[2T(x^2) = T(x)\theta(x) + \theta(x)T(x) \quad \text{for all } x \in R. \]

It seems natural to ask, as Vukman [10] did in the centralizer case, whether the converse is true. More precisely, we ask whether an additive mapping T on a ring R satisfying the above relation is a θ-centralizer for all $x, y \in R$. It is our aim to prove that the answer is in the affirmative if R is a 2-torsion free semiprime ring and θ is a surjective endomorphism with $\theta(Z) = Z$.

Theorem 1.2. Let R be a 2-torsion free semiprime ring with identity element, and let $T : R \to R$ be an additive mapping such that $2T(x^2) = T(x)\theta(x) + \theta(x)T(x)$ for all $x \in R$, where θ is a surjective endomorphism of R. Then T is both a left and a right θ-centralizer.

Theorem 1.3. Let R be a 2-torsion free semiprime ring with center Z, and let $T : R \to R$ be an additive mapping such that $2T(x^2) = T(x)\theta(x) + \theta(x)T(x)$ for all $x \in R$, where θ is a surjective endomorphism of R with $\theta(Z) = Z$. Then T is both a left and a right θ-centralizer.

§2. Proof of Theorem 1.2

We assume that R is noncommutative (the theorem is trivial when R is commutative). Replacing x by $x + 1$ in the equation

\[2T(x^2) = T(x)\theta(x) + \theta(x)T(x), \quad x \in R, \]

after some calculations we obtain

\[2T(x) = a\theta(x) + \theta(x)a, \quad x \in R, \]

where a denotes $T(1)$. We intend to prove that $a \in Z(R)$. Combining (1) and (2), we obtain

\[2(a\theta(x^2) + \theta(x^2)a) = (a\theta(x) + \theta(x)a)\theta(x) + \theta(x)(a\theta(x) + \theta(x)a). \]
This reduces to
\begin{equation}
[D(x), x]_\theta = 0, \quad x \in R.
\end{equation}

Here $[m, n]_\theta$ always denotes $m\theta(n) - \theta(n)m$. It is well known that if $f(x) = [x, a]$ for every $x \in R$, then f is a derivation on R, which is called an inner derivation. Similarly, $D(x)$ is a (θ, θ)-derivation; we call $D(x)$ an inner (θ, θ)-derivation on R. For an ordinary inner derivation f defined on a 2-torsion free semiprime ring R, Herstein [8, Lemma 1.1.9] proved that if $a \in R$ commutes with the inner derivation f defined by a (i.e., if $f(x) = [a, x]$ and $[a, f(x)] = 0$ for all $x \in R$), then $a \in Z(R)$, where $Z(R)$ is the center of R. We want to prove the same result in the case of an inner (θ, θ)-derivation. For this, we put $x + y$ for x in (3). We have
\begin{equation}
[D(x + y), x + y]_\theta = 0 = [D(x), x]_\theta + [D(x), y]_\theta + [D(y), x]_\theta + [D(y), y]_\theta = [D(x), y]_\theta + [D(y), x]_\theta, \quad x, y \in R.
\end{equation}

We rewrite the above equation in the form
\begin{equation}
[a, \theta(x)]\theta(y) + [a, \theta(y)]\theta(x) = \theta(y)[a, \theta(x)] + \theta(x)[a, \theta(y)].
\end{equation}

In particular, since θ is surjective, there exists $y \in R$ such that $\theta(y) = a$, so that we can put $\theta(y) = a$ in (4). We obtain
\begin{equation}
[a, \theta(x)]a = a[a, \theta(x)].
\end{equation}

Thus,
\begin{equation}
[D(x), a] = 0 = [[a, x]_\theta, a], \quad x \in R.
\end{equation}

We substitute xy for x in (5); since D is a (θ, θ)-derivation, we get
\begin{align*}
0 &= [a, [a, \theta(xy)]] = [a, [a, \theta(x)\theta(y)]] = [a, \theta(x)[a, \theta(y)] + [a, \theta(x)]\theta(y)] \\
&= [a, \theta(x)[a, \theta(y)]] + [a, [a, \theta(x)]\theta(y)] \\
&= \theta(x)[a, [a, \theta(y)]] + [a, \theta(x)][a, \theta(y)] + [a, \theta(x)][a, \theta(y)] + [a, [a, \theta(x)]\theta(y)].
\end{align*}

By (5), the above relation reduces to
\begin{equation}
2[a, \theta(x)\theta(y)] = 0, \quad x, y \in R.
\end{equation}

In a 2-torsion free semiprime ring this gives
\begin{equation}
[a, \theta(x)][a, \theta(y)] = 0, \quad x, y \in R.
\end{equation}

Substituting $y = rx$, $x, y, r \in R$, in the above relation, we get
\begin{align*}
[a, \theta(x)][a, \theta(rx)] &= [a, \theta(x)][a, \theta(r)\theta(x)] \\
&= [a, \theta(x)]\theta(r)[a, \theta(x)] + [a, \theta(x)][a, \theta(r)]\theta(x) \\
&= [a, \theta(x)]\theta(r)[a, \theta(x)] = 0, \quad x, y \in R.
\end{align*}

Since θ is surjective and R is a semiprime ring, it follows that
\begin{equation}
D(x) = [a, \theta(x)] = [a, x]_\theta = 0, \quad x \in R.
\end{equation}

This means that $a\theta(x) = \theta(x)a$ for all $x \in R$. Now from (2) it follows that $T(x) = a\theta(x) = \theta(x)a$. Thus, T is both a left and a right θ-centralizer. This completes the proof of the theorem in the case where R has an identity element.
§3. Proof of Theorem 1.3

We intend to prove that

\[[T(x), x]_\theta = 0, \quad x \in R. \]

For this, first we prove a weaker result: \(T \) satisfies the relation

\[[T(x), x^2]_\theta = 0, \quad x \in R. \]

Since the above relation can be written in the form

\[[T(x), x]_\theta \theta(x) + \theta(x)[T(x), x]_\theta = 0, \]

it is obvious that \(T \) satisfies (7) if \(T \) satisfies (6). Substituting \(x + y \) for \(x \) in the relation

\[2T(x^2) = T(x)\theta(x) + \theta(x)T(x), \quad x \in R, \]

we obtain

\[2T(xy + yx) = T(x)\theta(y) + \theta(x)T(y) + T(y)\theta(y) + \theta(y)T(x), \quad x, y \in R. \]

Our next step is to prove the relation

\[8T(xy) = T(x)\theta(xy + 3yx) + \theta(yx + 3xy)T(x) \]
\[+ \theta(x)T(y)\theta(x) - \theta(x^2)T(y) - T(y)\theta(x^2), \quad x, y \in R. \]

For this, we substitute \(2(xy + yx) \) for \(y \) in (9). Using (9), we obtain

\[4T(x(xy + yx) + (yx + xy)x) \]
\[= 2T(x)\theta(x + yx) + 2T(x)T(xy + yx) + 2T(xy + yx)\theta(y) + 2\theta(xy + yx)T(x) \]
\[= 2T(x)\theta(y + 3yx) + \theta(3xy + 3yx)T(x) + \theta(x)T(y)\theta(y) + \theta(y)T(x)\theta(x) \]
\[+ \theta(x)T(y)\theta(x) + \theta(x)T(y)\theta(x) + T(y)\theta(x^2) \]
\[+ \theta(y)T(x)\theta(x) + 2\theta(xy + yx)T(x). \]

Then we have

\[4T(x(xy + yx) + (yx + xy)x) \]
\[= T(x)\theta(2xy + 3yx) + \theta(3xy + 2yx)T(x) + \theta(x)T(y)\theta(y) + \theta(y)T(x)\theta(x) \]
\[+ 2\theta(x)T(y)\theta(x) + \theta(x^2)T(y) + T(y)\theta(x^2) \quad \forall x, y \in R. \]

On the other hand,

\[4T(x(xy + yx) + (yx + xy)x) = 4T(x^2y + yx^2) + 8T(xy) \]
\[= 2T(x^2)\theta(y) + 2T(y)\theta(x^2) + 2\theta(x^2)T(y) + 2\theta(y)T(x^2) + 8T(xy) \]
\[= T(x)\theta(xy) + \theta(xy)T(x)\theta(y) + 2\theta(x^2)T(y) \]
\[+ 2T(y)\theta(x^2) + \theta(y)T(x)\theta(x) + \theta(y)T(x) + 8T(xy). \]

Therefore,

\[4T(x(xy + yx) + (yx + xy)x) \]
\[= T(x)\theta(xy) + \theta(xy)T(x) + \theta(x)T(x)\theta(y) + \theta(y)T(x)\theta(x) \]
\[+ 2\theta(x^2)T(y) + 2T(y)\theta(x^2) + 8T(xy), \quad x, y \in R. \]

Comparing (11) and (12), we arrive at (10). Now, we prove the relation

\[T(x)\theta(xy + 2yx^2 - 2x^2y + \theta(xy - 2yx^2 - 2x^2y) + \theta(xy - 2yx^2 - 2x^2y)T(x) \]
\[+ \theta(x)T(x)\theta(x + yx + \theta(xy + yx)T(x)\theta(x) \]
\[+ \theta(x^2)T(x)\theta(y) + \theta(y)T(x)\theta(x^2) = 0, \quad x, y \in R. \]
Replacing y by $8xyx$ in (9) and using (10), we obtain

$$16T(x^2yx + xyx^2) = 8T(x)\theta(xy) + 8\theta(x)T(xy) + 8T(xy)\theta(x) + 8\theta(xy)T(x)$$

$$= 8T(x)\theta(xy) + \theta(x)T(x)\theta(xy + 3yx) + \theta(xy + 3x^2y)T(x)$$

$$+ 2\theta(x^2)T(y)\theta(x) - \theta(x^3)T(y) - \theta(x)T(y)\theta(x^2)$$

$$+ T(x)\theta(xy + 3y^2) + \theta(xy + 3xy)T(x)\theta(x) + 2\theta(x)T(y)\theta(x^2)$$

$$- \theta(x^3)T(y)\theta(x) - T(y)\theta(x^3) + 8\theta(xy)T(x).$$

Therefore,

$$16T(x^2yx + xyx^2) = T(x)\theta(9xyx + 3y^2) + \theta(9xyx + 3x^2y)T(x)$$

$$+ \theta(x)T(x)\theta(xy + 3yx) + \theta(xy + 3xy)T(x)\theta(x) + \theta(x^2)T(y)\theta(x)$$

$$+ \theta(x)T(y)\theta(x^2) - T(y)\theta(x^3) - \theta(x^3)T(y), \quad x, y \in R.$$

On the other hand, first using (10), and after collecting some terms and using (9), we obtain

$$16T(x^2yx + xyx^2) = 16T(x(xy)x) + 16T(x(y)x)$$

$$= 2T(x)\theta(x^2y + 3xy) + 2\theta(x^2y + 3x^2y)T(x) + 4\theta(x)T(y)\theta(x)$$

$$2\theta(x^2)T(xy) - 2T(xy)\theta(x^2) + 2T(x)\theta(xy + 3xy)$$

$$+ 2\theta(x^2y + 3xyx)T(x) + 4\theta(x)T(y)\theta(x) - 2\theta(x^2)T(yx) - 2T(yx)\theta(x^2)$$

$$= T(x)\theta(2x^2y + 6yx^2 + 8xy) + \theta(8xyx + 2yx^2 + 6x^2y)T(x)$$

$$+ 4\theta(x)T(xy + yx)\theta(x) - 2\theta(x^2)T(xy + yx) - 2T(xy + yx)\theta(x^2)$$

$$= T(x)\theta(2x^2y + 6yx^2 + 8xy) + \theta(8xyx + 2yx^2 + 6x^2y)T(x)$$

$$+ 2\theta(x^2)T(y)\theta(x) + 2\theta(x^2y + 3xyx)T(y)\theta(x) + 2\theta(xy)T(y)\theta(x^2) + 2\theta(xy)T(x)\theta(x)$$

$$- \theta(x^3)T(x)\theta(y) - \theta(y^3)T(x)\theta(x) - \theta(x^2)T(y)\theta(x)$$

$$- \theta(x)T(y^2) - \theta(x)T(y)\theta(x^2) - T(y)\theta(x^3) - \theta(y)T(x)\theta(x^2).$$

Now we have

$$16T(x^2yx + xyx^2) = T(x)\theta(2x^2y + 5yx^2 + 8xy)$$

$$+ \theta(2x^2 + 5x^2y + 8yx)T(x) + 2\theta(xy)T(x)\theta(yx) + 2\theta(xy)T(x)\theta(xy)$$

$$+ \theta(x^2)T(y)\theta(x) + \theta(x)T(y)\theta(x^2) - \theta(x^2)T(y)\theta(x)$$

$$- \theta(x^3)T(y) - T(y)\theta(x^3), \quad x, y \in R.$$

Comparing (14) and (15), we arrive at (13).

Replacing y by xy in (13), we obtain

$$T(x)\theta(xy^2 - 2y^3 - 2x^2y) + \theta(xy^2 - 2x^2y - 2y^3)T(x)$$

$$+ \theta(x)T(xy + yx) + \theta(xy + yx)T(x)\theta(x) + \theta(x^2)T(xy) = 0$$

$$\forall x, y \in R.$$

Right multiplication of (13) by $\theta(x)$ yields

$$T(x)\theta(xy^2 - 2y^3 - 2x^2y) + \theta(xy^2 - 2x^2y - 2y^2)T(x)\theta(x)$$

$$+ \theta(xy)T(x)\theta(x^2) + \theta(xy + yx)T(x)\theta(x^2) + \theta(x^2)T(xy) = 0$$

$$\forall x, y \in R.$$
Subtracting (17) from (16), we get
\[
\theta(xy)[\theta(x), T(x)] + \theta(2x^2y)[T(x), \theta(x)] + \theta(2yx^2)[T(x), \theta(x)]
\]
\[
+ \theta(xy)[\theta(x), T(x)]\theta(x) + \theta(yx)[\theta(x), T(x)]\theta(x)
\]
\[
+ \theta(y)[\theta(x), T(x)]\theta(x^2) = 0, \quad x, y \in R.
\]
After collecting the first and the fourth term together, this reduces to
\[
\theta(xy)[\theta(x^2), T(x)] + 2\theta(x^2y)[T(x), \theta(x)] + 2\theta(yx^2)[T(x), \theta(x)]
\]
\[
+ \theta(xy)[\theta(x), T(x)]\theta(x) + \theta(yx)[\theta(x), T(x)]\theta(x)
\]
\[
+ \theta(y)[\theta(x), T(x)]\theta(x^2) = 0, \quad x, y \in R.
\]
We substitute \(T(x)\theta(y) \) for \(\theta(y) \) in (18) to obtain
\[
\theta(x)T(x)\theta(y)[\theta(x^2), T(x)] + 2\theta(x^2)T(x)\theta(y)[T(x), \theta(x)]
\]
\[
+ 2T(x)\theta(y)\theta(x^2)[T(x), \theta(x)] + T(x)\theta(y)\theta(x)[T(x), \theta(x)]
\]
\[
+ T(x)\theta(y)[\theta(x), T(x)]\theta(x^2) = 0, \quad x, y \in R.
\]
Left multiplication of (18) by \(T(x) \) leads to the relation
\[
T(x)\theta(xy)[\theta(x), T(x)] + 2T(x)\theta(x^2y)[T(x), \theta(x)]
\]
\[
+ 2T(x)\theta(yx^2)[T(x), \theta(x)] + T(x)\theta(yx)[\theta(x), T(x)]\theta(x)
\]
\[
+ T(x)\theta(y)[\theta(x), T(x)]\theta(x^2) = 0, \quad x, y \in R.
\]
Subtracting (20) from (19), we get
\[
[T(x), \theta(x)]\theta(y)[T(x), \theta(x^2)] - 2[T(x), \theta(x^2)]\theta(y)[T(x), \theta(x)] = 0, \quad x, y \in R.
\]
If we set
\[
a = [T(x), \theta(x)], \quad b = [T(x), \theta(x^2)], \quad c = -2[T(x), \theta(x^2)],
\]
the above relation becomes
\[
a\theta(y)b + c\theta(y)a = 0, \quad y \in R.
\]
Substituting \(yz \) for \(y \) in (21), we obtain
\[
a\theta(yz)b + c\theta(yz)a = a\theta(y)\theta(z)b + c\theta(y)\theta(z)a = 0, \quad z, y \in R.
\]
Next, substituting \(\theta(y)a \) for \(\theta(y) \) in the last equation, we see that
\[
a\theta(y)a\theta(z)b + c\theta(y)a\theta(z)a = 0, \quad z, y \in R.
\]
Left multiplication of (21) by \(a\theta(y) \) gives
\[
a\theta(y)a\theta(z)b + a\theta(y)c\theta(z)a = 0, \quad z, y \in R.
\]
After subtracting (23) from (22), we obtain
\[
(a\theta(y)c - c\theta(y)a)\theta(z)a = 0, \quad z, y \in R.
\]
After replacing \(\theta(z) \) by \(\theta(z)c\theta(y) \) in (24), we obtain
\[
(a\theta(y)c - c\theta(y)a)\theta(z)c\theta(y)a = 0, \quad z, y \in R.
\]
Right multiplication of (24) by \(\theta(y)c \) gives
\[
(a\theta(y)c - c\theta(y)a)\theta(z)a\theta(y)c = 0, \quad z, y \in R.
\]
After subtracting (25) from (26), we get
\[
(a\theta(y)c - c\theta(y)a)\theta(z)(a\theta(y)c - c\theta(y)a) = 0, \quad z, y \in R.
Since R is semiprime and θ is surjective, it follows that

$$a\theta(y)c = c\theta(y)a, \quad y \in R.$$

Combining (21) with (27), we arrive at the relation

$$a\theta(y)(b + c) = 0, \quad y \in R.$$

In other words,

$$[T(x), \theta(x)]\theta(y)[T(x), \theta(x^2)] = 0, \quad x, y \in R.$$

Since

$$[T(x), \theta(x^2)]\theta(y)[T(x), \theta(x^2)]$$

$$= \theta(x)[T(x), \theta(x)]\theta(y)[T(x), \theta(x^2)] + [T(x), \theta(x)]\theta(x)\theta(y)[T(x), \theta(x^2)]$$

$$= [T(x), \theta(x)]\theta(xy)[T(x), \theta(x^2)] = 0, \quad x, y \in R,$$

we get

$$[T(x), \theta(x^2)]\theta(y)[T(x), \theta(x^2)] = 0, \quad x, y \in R.$$

Since R is semiprime and θ is surjective, we obtain

$$[T(x), \theta(x^2)] = 0, \quad x \in R.$$

After substituting $x + y$ for x in (31), we get

$$[T(x), \theta(y^2)] + [T(y), \theta(x^2)] + [T(x), \theta(xy + yx)] + [T(y), \theta(xy + yx)] = 0, \quad x, y \in R.$$

Substituting $-x$ for x and comparing the resulting relation obtained with the above, we obtain

$$[T(x), \theta(xy + yx)] + [T(y), \theta(x^2)] = 0, \quad x, y \in R,$$

because R is torsion free. Substituting $2(xy + yx)$ for y in (32) and using (9) and (31), we arrive at

$$0 = 2[T(x), \theta(x^2)2y + 2yx]\$$

$$+ [T(x), \theta(y)]\theta(y)T(y) + T(y)\theta(x) + \theta(y)T(x), \theta(x^2)]$$

$$= 2\theta(x^2)[T(x), \theta(y)] + 2[T(x), \theta(y)]\theta(x^2) + 4[T(x), \theta(xy)] + T(x)\theta(y, \theta(x^2)]$$

$$+ \theta(x)[T(x), \theta(x^2)] + [T(y), \theta(x^2)]\theta(x) + \theta(y), \theta(x^2)]T(x) = 0, \quad x, y \in R.$$

Now we have

$$2\theta(x^2)[T(x), \theta(y)] + 2[T(x), \theta(y)]\theta(x^2) + 4[T(x), \theta(xy)] + T(x)\theta(y), \theta(x^2)]$$

$$+ \theta(x)[T(x), \theta(x^2)] + [T(y), \theta(x^2)]\theta(x) + \theta(y), \theta(x^2)]T(x) = 0, \quad x, y \in R.$$

For $y = x$ the above relation reduces to

$$\theta(x^2)[T(x), \theta(x)] + [T(x), \theta(x)]\theta(x^2) + 2[T(x), \theta(x^3)] = 0, \quad x \in R.$$

Thus,

$$\theta(x^2)[T(x), \theta(x)] + 3[T(x), \theta(x)]\theta(x^2) = 0, \quad x \in R.$$

In accordance with the relation $\theta(x)[T(x), \theta(x)] + [T(x), \theta(x)]\theta(x) = 0$ (see (31)), in the above equation we replace $\theta(x^2)[T(x), \theta(x)]$ by $-[T(x), \theta(x)]\theta(x^2)$. This gives

$$[T(x), \theta(x)]\theta(x^2) = 0, \quad x, y \in R,$$

and

$$\theta(x^2)[T(x), \theta(x)] = 0, \quad x, y \in R.$$
Because of (32), we can replace \([T(y), \theta(x^2)]\) by \([-T(x), \theta(xy + yx)]\) in (33), obtaining
\[
0 = 2\theta(x^2)[T(x), \theta(y)] + 2[T(x), \theta(y)]\theta(x^2) + 4[T(x), \theta(xy)] + T(x)[\theta(y), \theta(x^2)] \\
+ [\theta(y), \theta(x^2)]T(x) - \theta(x)[T(x), \theta(xy + yx)] - [T(x), \theta(xy + yx)]\theta(x) \\
= 2\theta(x^2)[T(x), \theta(y)] + 2[T(x), \theta(y)]\theta(x^2) + 4[T(x), \theta(x)]\theta(yx) \\
+ 4\theta(x)[T(x), \theta(y)]\theta(x) + 4\theta(xy)[T(x), \theta(x)] + T(x)[\theta(y), \theta(x^2)] \\
+ [\theta(y), \theta(x^2)]T(x) - \theta(x)[T(x), \theta(x)]\theta(y) - \theta(x^2)[T(x), \theta(y)] \\
- \theta(x)[T(x), \theta(y)]\theta(x) - \theta(xy)[T(x), \theta(x)] - [T(x), \theta(x)]\theta(yx) \\
- \theta(x)[T(x), \theta(y)]\theta(x) - [T(x), \theta(y)]\theta(x^2) - \theta(y)[T(x), \theta(x)]\theta(x).
\]
Now we have
\[
\theta(x^2)[T(x), \theta(y)] + [T(x), \theta(y)]\theta(x^2) + 3[T(x), \theta(x)]\theta(yx) \\
+ 3\theta(xy)[T(x), \theta(x)] + 2\theta(x)[T(x), \theta(y)]\theta(x) + T(x)[\theta(y), \theta(x^2)] \\
+ [\theta(y), \theta(x^2)]T(x) - \theta(x)[T(x), \theta(x)]\theta(yx) - \theta(yx)[T(x), \theta(x)]\theta(x) \\
= \theta(x^2)[T(x), \theta(y)]\theta(x) + \theta(x^2)[T(x), \theta(y)] + [T(x), \theta(y)]\theta(x^3) \\
+ \theta(y)[T(x), \theta(x)]\theta(x^2) + 3\theta(xy)[T(x), \theta(x)] + 3\theta(xy)[T(x), \theta(x)] \\
+ 2\theta(x)[T(x), \theta(y)]\theta(x^2) + 2\theta(xy)[T(x), \theta(x)]\theta(x) + T(x)[\theta(y), \theta(x^2)]\theta(x) \\
+ [\theta(y), \theta(x^2)]\theta(x)T(x) - \theta(x)[T(x), \theta(x)]\theta(xy) - \theta(xy)[T(x), \theta(x)]\theta(x), \\
x, y \in R.
\]
By (34) and (36), this reduces to
\[
\theta(x^2)[T(x), \theta(y)]\theta(x) + \theta(x^2)[T(x), \theta(x)] + [T(x), \theta(y)]\theta(x^3) \\
+ 3\theta(xy)[T(x), \theta(x)] + 3\theta(xy)[T(x), \theta(y)]\theta(x^2) \\
+ 2\theta(xy)[T(x), \theta(x)]\theta(x) + T(x)[\theta(y), \theta(x^2)]\theta(x) \\
+ [\theta(y), \theta(x^2)]\theta(x)T(x) - \theta(x)[T(x), \theta(x)]\theta(xy) = 0, \quad x, y \in R.
\]
Right multiplication of (37) by \(\theta(x)\) gives
\[
\theta(x^2)[T(x), \theta(y)]\theta(x) + [T(x), \theta(y)]\theta(x^3) + 3[T(x), \theta(x)]\theta(xy^2) \\
+ 3\theta(xy)[T(x), \theta(x)] + 2\theta(xy)[T(x), \theta(y)]\theta(x^2) \\
+ T(x)[\theta(y), \theta(x)]\theta(x) + [\theta(y), \theta(x^2)]T(x)\theta(x) \\
- \theta(x)[T(x), \theta(x)]\theta(xy) - \theta(y)[T(x), \theta(x)]\theta(x^2) = 0, \quad x, y \in R.
\]
By (34) we have $[T(x), \theta(x)]\theta(x^2) = 0$, and (39) becomes

$$\theta(x^2)[T(x), \theta(y)]\theta(x) + [T(x), \theta(y)]\theta(x^3) + 3[T(x), \theta(x)]\theta(yx^2)$$

(40) $$+ 3\theta(y)[T(x), \theta(x)]\theta(x) + 2\theta(x)[T(x), \theta(y)]\theta(x^2) + T(x)[\theta(y), \theta(x^2)]\theta(x) + [\theta(y), \theta(x^2)]T(x)\theta(x) - \theta(x)[T(x), \theta(x)]\theta(y) = 0, \quad x, y \in R.$$

After subtracting (40) from (38), we obtain

$$\theta(x^2)[T(x), \theta(x)] + 3\theta(xy)[\theta(x), [T(x), \theta(x)]] + 2\theta(xy)[T(x), \theta(x)]\theta(x) + [\theta(y), \theta(x^2)]\theta(x), T(x)] = 0.$$

By (35), this reduces to

$$2\theta(x^2)[T(x), \theta(x)] + 3\theta(xy)[T(x), \theta(x)] - \theta(xy)[T(x), \theta(x)]\theta(x) = 0, \quad x, y \in R.$$

Replacing $-[T(x), \theta(x)]\theta(x)$ by $\theta(x)[T(x), \theta(x)]$ in the above relation, we obtain

$$\theta(x^2)[T(x), \theta(x)] + 2\theta(xy)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Using (31), (34), (35), and (36), we see that (18) reduces to

$$\theta(x^2)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Combining this with the above relation, we get

$$\theta(x)\theta(y)\theta(x)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Since θ is surjective, we can replace $\theta(y)$ by $[T(x), \theta(x)]\theta(y)$; it follows that

$$\theta(x)[T(x), \theta(x)]\theta(y)\theta(x)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Since θ is surjective and R is semiprime, we have

(41) $$\theta(x)[T(x), \theta(x)] = 0, \quad x \in R.$$

Also,

$$[T(x), \theta(x)]\theta(x) = -\theta(x)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Thus,

(42) $$[T(x), \theta(x)]\theta(x) = 0, \quad x \in R.$$

Substituting $x + y$ for x in (41) and using (41), we get

$$\theta(x + y)[T(x + y), \theta(x + y)]$$

$$\quad = \theta(x)[T(x), \theta(y)] + \theta(x)[T(y), \theta(x)] + \theta(x)[T(y), \theta(y)]$$

$$\quad + \theta(y)[T(x), \theta(x)] + \theta(y)[T(x), \theta(y)] + \theta(y)[T(y), \theta(x)] = 0, \quad x, y \in R.$$

Substituting $-x$ for x, comparing the resulting relation with the above, and using the fact that R is 2-torsion free, we obtain

$$\theta(y)[T(x), \theta(x)] + \theta(x)[T(x), \theta(y)] + \theta(x)[T(y), \theta(x)] = 0, \quad x, y \in R.$$

Multiplying the above relation by $[T(x), \theta(x)]$ and using (42), we arrive at the formula

$$[T(x), \theta(x)]\theta(y)[T(x), \theta(x)] = 0, \quad x, y \in R.$$

Since R is semiprime and θ is surjective, we get

(43) $$[T(x), \theta(x)] = 0, \quad x \in R.$$

Combining (43) with (8), we see that

$$T(x^2) = \theta(x)T(x), \quad x \in R.$$

This means that T is a left and also a right Jordan θ-centralizer. It remains to use [1, Theorem 2]. The proof is complete.
Corollary 3.1 (\cite{10} Theorem 1). Let \(R \) be a 2-torsion free semiprime ring, and let \(T : R \to R \) be an additive mapping such that \(2T(x^2) = T(x)x + xT(x) \) for all \(x \in R \). Then \(T \) is both a left and a right centralizer.

References

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, AL-AZHAR UNIVERSITY, NASR CITY, CAIRO, EGYPT
E-mail address: nagydaif@yahoo.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, BENI SUEF UNIVERSITY, BENI SUEF, EGYPT
E-mail address: m.s.tammam@yahoo.com

Received 28/SEP/2007
Originally published in English