Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Gap opening in the essential spectrum of the elasticity theory problem in a periodic half-layer
HTML articles powered by AMS MathViewer

by S. A. Nazarov
Translated by: A. Plotkin
St. Petersburg Math. J. 21 (2010), 281-307
DOI: https://doi.org/10.1090/S1061-0022-10-01095-2
Published electronically: January 26, 2010

Abstract:

Rayleigh waves are studied in an elastic half-layer with a periodic end and rigidly clamped faces. It is established that the essential spectrum of the corresponding problem of elasticity theory has a band structure, and an example of a waveguide is presented in which a gap opens in the essential spectrum; i.e., an interval arises that contains points of an at most discrete spectrum.
References
  • Rayleigh, Lord, On waves propagating along the plane surface of an elastic solid, Proc. London Math. Soc. 17 (1885), 4–11.
  • A. S. Bonnet-Ben Dhia, J. Duterte, and P. Joly, Mathematical analysis of elastic surface waves in topographic waveguides, Math. Models Methods Appl. Sci. 9 (1999), no. 5, 755–798. MR 1697393, DOI 10.1142/S0218202599000373
  • I. V. Kamotskiĭ and A. P. Kiselev, Energy approach to the proof of the existence of Rayleigh waves in an anisotropic halfspace, Prikl. Mat. Mekh. 73 (2009), no. 4, 645–654. (Russian)
  • S. A. Nazarov, Rayleigh waves for an elastic half-layer with a partially clamped periodic boundary, Dokl. Akad. Nauk 423 (2008), no. 1, 56–61 (Russian). MR 2494246
  • S. G. Lekhnitskiĭ, Teoriya uprugosti anizotropnogo tela, Izdat. “Nauka”, Moscow, 1977 (Russian). Second edition, revised and augmented. MR 0502604
  • S. A. Nazarov, Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates. Vol. I, Nauchn. Kniga, Novosibirsk, 2002. (Russian)
  • F. Ursell, Mathematical aspects of trapping modes in the theory of surface waves, J. Fluid Mech. 183 (1987), 421–437. MR 919481, DOI 10.1017/S0022112087002702
  • C. M. Linton and P. McIver, Embedded trapped modes in water waves and acoustics, Wave Motion 45 (2007), no. 1-2, 16–29. MR 2441664, DOI 10.1016/j.wavemoti.2007.04.009
  • O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoĭ fiziki, Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0599579
  • J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • M. Š. Birman and M. Z. Solomjak, Spektral′naya teoriya samosopryazhennykh operatorov v gil′bertovom prostranstve, Leningrad. Univ., Leningrad, 1980 (Russian). MR 609148
  • V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
  • V. G. Maz′ja and B. A. Plamenevskiĭ, The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29–60 (Russian). MR 601608, DOI 10.1002/mana.19770760103
  • V. G. Maz′ja and B. A. Plamenevskiĭ, Estimates in $L_{p}$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25–82 (Russian). MR 492821, DOI 10.1002/mana.19780810103
  • S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5(329), 77–142 (Russian); English transl., Russian Math. Surveys 54 (1999), no. 5, 947–1014. MR 1741662, DOI 10.1070/rm1999v054n05ABEH000204
  • Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
  • V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MR 1469972, DOI 10.1090/surv/052
  • S. A. Nazarov, Asymptotic behavior of solutions of a problem in elasticity theory for a three-dimensional body with thin extensions, Dokl. Akad. Nauk 352 (1997), no. 4, 458–461 (Russian). MR 1450987
  • Serguei A. Nazarov, Korn’s inequalities for junctions of spatial bodies and thin rods, Math. Methods Appl. Sci. 20 (1997), no. 3, 219–243. MR 1430494, DOI 10.1002/(SICI)1099-1476(199702)20:3<219::AID-MMA854>3.3.CO;2-3
  • Vladimir Kozlov, Vladimir Maz’ya, and Alexander Movchan, Asymptotic analysis of fields in multi-structures, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1860617
  • S. A. Nazarov, Asymptotic analysis and modeling of the junction of a massive body and thin rods, Tr. Semin. im. I. G. Petrovskogo 24 (2004), 95–214, 342–343 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 127 (2005), no. 5, 2192–2262. MR 2360841, DOI 10.1007/s10958-005-0177-0
  • P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3–52, 240 (Russian). MR 667973
  • Alex Figotin and Peter Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56 (1996), no. 1, 68–88. MR 1372891, DOI 10.1137/S0036139994263859
  • M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985), 122 (Russian). MR 798454
  • Peter Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60, Birkhäuser Verlag, Basel, 1993. MR 1232660, DOI 10.1007/978-3-0348-8573-7
  • Edward L. Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Differential Equations 133 (1997), no. 1, 15–29. MR 1426755, DOI 10.1006/jdeq.1996.3204
  • Rainer Hempel and Karsten Lienau, Spectral properties of periodic media in the large coupling limit, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1445–1470. MR 1765136, DOI 10.1080/03605300008821555
  • Leonid Friedlander, On the density of states of periodic media in the large coupling limit, Comm. Partial Differential Equations 27 (2002), no. 1-2, 355–380. MR 1886963, DOI 10.1081/PDE-120002790
  • V. V. Zhikov, Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients, Algebra i Analiz 16 (2004), no. 5, 34–58 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 5, 773–790. MR 2106666, DOI 10.1090/S1061-0022-05-00878-2
  • N. Filonov, Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys. 240 (2003), no. 1-2, 161–170. MR 2004984, DOI 10.1007/s00220-003-0904-7
  • Peter Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math., vol. 22, SIAM, Philadelphia, PA, 2001, pp. 207–272. MR 1831334
  • I. M. Gel′fand, Expansion in characteristic functions of an equation with periodic coefficients, Doklady Akad. Nauk SSSR (N.S.) 73 (1950), 1117–1120 (Russian). MR 0039154
  • S. A. Nazarov, Elliptic boundary value problems with periodic coefficients in a cylinder, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 101–112, 239 (Russian). MR 607578
  • I. C. Gohberg and M. G. Kreĭn, Vvedenie v teoriyu lineĭ nykh nesamosopryazhennykh operatorov v gil′bertovom prostranstve, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0220070
  • M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk 19 (1964), no. 3 (117), 53–161 (Russian). MR 0192188
  • Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
  • V. A. Kondrat′ev and O. A. Oleĭnik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 55–98, 239 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 65–119. MR 971465, DOI 10.1070/RM1988v043n05ABEH001945
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
  • K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. of Math. (2) 48 (1947), 441–471. MR 22750, DOI 10.2307/1969180
  • P. P. Mosolov and V. P. Mjasnikov, A proof of Korn’s inequality, Dokl. Akad. Nauk SSSR 201 (1971), 36–39 (Russian). MR 0296685
  • G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Grundlehren der Mathematischen Wissenschaften, vol. 219, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John. MR 0521262
  • B. A. Shoikhet, On asymptotically exact equations of thin plates of complex structure, Prikl. Mat. Meh. 37 (1973), 914–924 (Russian); English transl., J. Appl. Math. Mech. 37 (1973), 867–877 (1974). MR 0349110, DOI 10.1016/0021-8928(73)90016-6
  • S. A. Nazarov, Korn inequalities that are asymptotically exact for thin domains, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom. vyp. 2 (1992), 19–24, 113–114 (Russian, with English and Russian summaries); English transl., Vestnik St. Petersburg Univ. Math. 25 (1992), no. 2, 18–22. MR 1280920
  • S. A. Nazarov, Korn’s inequalities for elastic joints of massive bodies, thin plates, and rods, Uspekhi Mat. Nauk 63 (2008), no. 1(379), 37–110 (Russian, with Russian summary); English transl., Russian Math. Surveys 63 (2008), no. 1, 35–107. MR 2406182, DOI 10.1070/RM2008v063n01ABEH004501
  • S. A. Nazarov, Justification of the asymptotic theory of thin rods. Integral and pointwise estimates, J. Math. Sci. (New York) 97 (1999), no. 4, 4245–4279. Problems of mathematical physics and function theory. MR 1788230, DOI 10.1007/BF02365044
  • —, Korn inequality for elastic junction of a body with a rod, Problems of Mechanics of Deformed Hard Body, S.-Peterburg. Gos. Univ., St. Petersburg, 2002, pp. 234–240. (Russian)
  • S. A. Nazarov, Trapped modes for a cylindrical elastic waveguide with a damping gasket, Zh. Vychisl. Mat. Mat. Fiz. 48 (2008), no. 5, 863–881 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 48 (2008), no. 5, 816–833. MR 2433645, DOI 10.1134/S0965542508050102
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q72
  • Retrieve articles in all journals with MSC (2000): 35Q72
Bibliographic Information
  • S. A. Nazarov
  • Affiliation: Institute of Engineering Problems, Russian Academy of Sciences, 61 Bol’shoi Prospekt V.O., St. Petersburg 199178, Russia
  • Email: serna@snark.ipme.ru, srgnazarov@yahoo.co.uk
  • Received by editor(s): May 8, 2008
  • Published electronically: January 26, 2010
  • Additional Notes: Supported by the Netherlands Organization for Scientific Research (NWO) and RFBR, joint project 047.017.020
  • © Copyright 2010 American Mathematical Society
  • Journal: St. Petersburg Math. J. 21 (2010), 281-307
  • MSC (2000): Primary 35Q72
  • DOI: https://doi.org/10.1090/S1061-0022-10-01095-2
  • MathSciNet review: 2553046