Solvability of algebras of pseudodifferential operators with piecewise smooth coefficients on smooth manifolds

Author:
B. A. Plamenevskiĭ

Translated by:
The author

Original publication:
Algebra i Analiz, tom **21** (2009), nomer 2.

Journal:
St. Petersburg Math. J. **21** (2010), 317-351

MSC (2000):
Primary 46L45, 47G30

DOI:
https://doi.org/10.1090/S1061-0022-10-01097-6

Published electronically:
January 26, 2010

MathSciNet review:
2553048

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On a smooth compact manifold without boundary, the -algebra generated on by the operators of two classes is considered. One class consists of zero order pseudodifferential operators with smooth symbols. The other class comprises the operators of multiplication by functions (``coefficients'') that may have discontinuities along a given collection of submanifolds (with boundary) of various dimensions; the submanifolds may intersect under nonzero angles. The situation is described formally by a stratification of the manifold . All the equivalence classes of irreducible representations of are listed with a detailed proof. A solving composition series in is constructed. This is a finite sequence of ideals whose subquotients are isomorphic to algebras of continuous functions with compact values; such operator-valued functions are defined on locally compact spaces and tend to zero at infinity.

**1.**A. S. Dynin,*Inversion problem for singular integral operators: -approach*, Proc. Nat. Acad. Sci. U.S.A.**75**(1978), 4668-4670. MR**0507929 (80c:46066)****2.**I. Ts. Gokhberg and N. Ya. Krupnik,*The algebra generated by the one-dimensional singular integral operators with piecewise continuous coefficients*, Funktsional. Anal. i Prilozhen.**4**(1970), no. 3, 26-36; English transl. in Functional Anal. Appl.**4**(1970), no. 3. MR**0270164 (42:5057)****3.**L. Boutet de Monvel,*Boundary problems for pseudodifferential operators*, Acta Math.**126**(1971), 11-51. MR**0407904 (53:11674)****4.**R. G. Douglas and R. Howe,*On the -algebra of Toeplitz operators on the quarterplane*, Trans. Amer. Math. Soc.**158**(1971), 203-217. MR**0288591 (44:5787)****5.**B. A. Plamenevskiĭ and V. N. Senichkin,*Solvable operator algebras*, Algebra i Analiz**6**(1994), no. 5, 1-87; English transl., St. Petersburg Math. J.**6**(1995), no. 5, 895-968. MR**1318302 (95k:47038)****6.**C. Schochet,*Topological methods for C*-algebras. I. Spectral sequences*, Pacific J. Math.**96**(1981), no. 1, 193-211. MR**0634772 (84g:46105a)****7.**B. A. Plamenevskiĭ and V. N. Senichkin,*The spectrum of an algebra of pseudodifferential operators with piecewise smooth symbols*, Izv. Akad. Nauk SSSR Ser. Mat.**53**(1989), no. 1, 147-178; English transl., Math. USSR-Izv.**34**(1990), no. 1, 147-179. MR**0992982 (90d:58151)****8.**-,*On composition series in algebras of pseudodifferential operators and in algebras of Wiener-Hopf operators*, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akad. Verlag, Berlin, 1996, pp. 373-404. MR**1409838 (97h:47050)****9.**-,*Representations of -algebras of pseudodifferential operators on piecewise smooth manifolds*, Algebra i Analiz**13**(2001), no. 6, 124-174; English transl., St. Petersburg Math. J.**13**(2002), no. 6, 993-1032. MR**1883841 (2002j:47128)****10.**-,*On a class of pseudodifferential operators on and on stratified manifolds*, Mat. Sb.**191**(2000), no. 5, 109-142; English transl., Sb. Math.**191**(2000), no. 5-6, 725-757. MR**1773771 (2002g:35219)****11.**B. A. Plamenevskiĭ,*Algebras of pseudodifferential operators*, Nauka, Moscow, 1986; English transl., Math. Appl. (Soviet Ser.), vol. 43, Kluwer Acad. Publ. Group, Dordrecht, 1989. MR**0869253 (88d:47062)**; MR**1026642 (90h:47098)****12.**B. A. Plamenevskiĭ and V. N. Senichkin,*The spectrum of -algebras generated by pseudodifferential operators with discontinuous symbols*, Izv. Akad. Nauk SSSR Ser. Mat.**47**(1983), no. 6, 1263-1284; English transl. in Math. USSR-Izv.**23**(1984), no. 3. MR**0727755 (85c:47047)****13.**-,*On representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols*, Izv. Akad. Nauk SSSR Ser. Mat.**51**(1987), no. 4, 833-859; English transl., Math. USSR-Izv.**31**(1988), no. 1, 143-169. MR**0914862 (89h:47077)****14.**R. G. Douglas,*Banach algebra techniques in operator theory*, Pure Appl. Math., vol. 49, Acad. Press, New York-London, 1972. MR**0361893 (50:14335)****15.**A. S. Dynin,*Multivariable Wiener-Hopf operators. I. Representations*, Integral Equations Operator Theory**9**(1986), no. 4, 537-569. MR**0853628 (87m:47066)****16.**I. B. Simonenko,*Convolution type operators in cones*, Mat. Sb. (N. S.)**74**(1967), no. 2, 298-313; English transl. in Math. USSR-Sb.**3**(1967). MR**0222723 (36:5773)****17.**V. N. Senichkin,*The spectrum of an algebra of pseudodifferential operators on a manifold with smooth edges*, Algebra i Analiz**8**(1996), no. 6, 105-147; English transl., St. Petersburg Math. J.**8**(1997), no. 6, 985-1013. MR**1458140 (98e:47080)****18.**H. O. Cordes,*On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators*, J. Funct. Anal.**18**(1975), no. 2, 115-131. MR**0377599 (51:13770)****19.**J. Dixmier,*Les -algèbres et leurs représentations*, Cahiers Sci., vol. 29, Gauthier-Villars, Paris, 1969. MR**0246136 (39:7442)**

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2000):
46L45,
47G30

Retrieve articles in all journals with MSC (2000): 46L45, 47G30

Additional Information

**B. A. Plamenevskiĭ**

Affiliation:
Department of Mathematical Physics, Physics Institute, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg 198504, Russia

Email:
boris.plamen@gmail.com

DOI:
https://doi.org/10.1090/S1061-0022-10-01097-6

Keywords:
$C^*$-algebra,
stratification,
composition series,
pseudodifferential operator

Received by editor(s):
August 20, 2008

Published electronically:
January 26, 2010

Additional Notes:
Supported by grant NSh-816.2008.1

Article copyright:
© Copyright 2010
American Mathematical Society