St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Spectral synthesis in the kernel of a convolution operator on weighted spaces


Author: R. S. Yulmukhametov
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 21 (2009), nomer 2.
Journal: St. Petersburg Math. J. 21 (2010), 353-363
MSC (2000): Primary 32A50, 45E10, 46E10
Published electronically: January 26, 2010
MathSciNet review: 2553049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted spaces of analytic functions on a bounded convex domain $ D\subset \mathbb{C}^p$ are treated. Let $ U =\{ u_n\} _{n=1}^\infty $ be a monotone decreasing sequence of convex functions on $ D$ such that $ u_n(z)\longrightarrow \infty $ as $ \operatorname{dist}(z,\partial D) \longrightarrow 0$. The symbol $ H(D,U)$ stands for the space of all $ f\in H(D)$ satisfying $ \vert f(z)\vert\exp (-u_n(z))\longrightarrow 0$ as $ \operatorname{dist}(z,\partial D)\longrightarrow 0$, for all $ n\in \mathbb{N}$. This space is endowed with a locally convex topology with the aid of the seminorms $ p_n(f)=\sup_{z\in D}\vert f(z)\vert\exp (-u_n(z))$, $ n=1, 2, \dots$. Clearly, every functional $ S\in H^*(D)$ is a continuous linear functional on $ H(D,U)$, and the corresponding convolution operator $ M_S : f\longrightarrow S_w(f(z+w))$ acts on $ H(D,U)$. All elementary solutions of the equation

 

$\displaystyle M_S[f]=0, \leqno(*) $

 

i.e., all solutions of the form $ z^\alpha e^{\langle a,z\rangle}$, $ \alpha \in \mathbb{Z}_+^p$, $ a\in \mathbb{C}^p$, belong to $ H(D,U)$. It is shown that the system $ E(S)$ of elementary solutions is dense in the space of solutions of equation $ (*)$ that belong to $ H(D,U)$.


References [Enhancements On Off] (What's this?)

  • 1. Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. MR 0285849
  • 2. I. F. Krasičkov-Ternovskiĭ, A homogeneous convolution type equation on convex domains, Dokl. Akad. Nauk SSSR 197 (1971), 29–31 (Russian). MR 0277729
  • 3. Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 271–355 (French). MR 0086990
  • 4. Leon Ehrenpreis, Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. 77 (1955), 293–328. MR 0070047
  • 5. V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, “Nauka”, Moscow, 1982 (Russian). MR 678923
  • 6. R. S. Yulmukhametov, Homogeneous convolution equations, Dokl. Akad. Nauk SSSR 316 (1991), no. 2, 312–315 (Russian); English transl., Soviet Math. Dokl. 43 (1991), no. 1, 101–103. MR 1100598
  • 7. O. V. Epifanov, Duality of a pair of spaces of analytic functions of bounded growth, Dokl. Akad. Nauk SSSR 319 (1991), no. 6, 1297–1300 (Russian); English transl., Soviet Math. Dokl. 44 (1992), no. 1, 314–317. MR 1150105
  • 8. N. F. Abuzyarova and R. S. Yulmukhametov, Dual spaces of weighted spaces of analytic functions, Sibirsk. Mat. Zh. 42 (2001), no. 1, 3–17, i (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 1, 1–14. MR 1830787, 10.1023/A:1004812706564
  • 9. Alexandre Grothendieck, Sur les espaces (𝐹) et (𝐷𝐹), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 0075542
  • 10. A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6(288), 3–58 (Russian); English transl., Russian Math. Surveys 47 (1992), no. 6, 1–56. MR 1209144, 10.1070/RM1992v047n06ABEH000954
  • 11. Nessim Sibony, Approximation polynomiale pondérée dans un domaine d’holomorphie de 𝐶ⁿ, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, x, 71–99. MR 0430312
  • 12. L. I. \cyr{R}onkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0320357
    L. I. Ronkin, Introduction to the theory of entire functions of several variables, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by Israel Program for Scientific Translations; Translations of Mathematical Monographs, Vol. 44. MR 0346175
  • 13. I. F. Krasičkov-Ternovskiĭ, Estimates for a subharmonic difference of subharmonic functions. I, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 216–247, 326 (Russian). MR 0507987
  • 14. Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
  • 15. R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 32A50, 45E10, 46E10

Retrieve articles in all journals with MSC (2000): 32A50, 45E10, 46E10


Additional Information

R. S. Yulmukhametov
Affiliation: Institute of Mathematics with Computing Centre, 112 Chernyshevsky Street, Ufa 450077, Russia
Email: Yulmukhametov@mail.ru

DOI: http://dx.doi.org/10.1090/S1061-0022-10-01098-8
Keywords: Weighted spaces of analytic functions, convolution operator, spectral synthesis
Received by editor(s): April 2, 2007
Published electronically: January 26, 2010
Additional Notes: Supported by RFBR (grant 06-01-00516-a.)
Article copyright: © Copyright 2010 American Mathematical Society