Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Spectral synthesis in the kernel of a convolution operator on weighted spaces


Author: R. S. Yulmukhametov
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 21 (2009), nomer 2.
Journal: St. Petersburg Math. J. 21 (2010), 353-363
MSC (2000): Primary 32A50, 45E10, 46E10
DOI: https://doi.org/10.1090/S1061-0022-10-01098-8
Published electronically: January 26, 2010
MathSciNet review: 2553049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted spaces of analytic functions on a bounded convex domain $ D\subset \mathbb{C}^p$ are treated. Let $ U =\{ u_n\} _{n=1}^\infty $ be a monotone decreasing sequence of convex functions on $ D$ such that $ u_n(z)\longrightarrow \infty $ as $ \operatorname{dist}(z,\partial D) \longrightarrow 0$. The symbol $ H(D,U)$ stands for the space of all $ f\in H(D)$ satisfying $ \vert f(z)\vert\exp (-u_n(z))\longrightarrow 0$ as $ \operatorname{dist}(z,\partial D)\longrightarrow 0$, for all $ n\in \mathbb{N}$. This space is endowed with a locally convex topology with the aid of the seminorms $ p_n(f)=\sup_{z\in D}\vert f(z)\vert\exp (-u_n(z))$, $ n=1, 2, \dots$. Clearly, every functional $ S\in H^*(D)$ is a continuous linear functional on $ H(D,U)$, and the corresponding convolution operator $ M_S : f\longrightarrow S_w(f(z+w))$ acts on $ H(D,U)$. All elementary solutions of the equation

 

$\displaystyle M_S[f]=0, \leqno(*) $

 

i.e., all solutions of the form $ z^\alpha e^{\langle a,z\rangle}$, $ \alpha \in \mathbb{Z}_+^p$, $ a\in \mathbb{C}^p$, belong to $ H(D,U)$. It is shown that the system $ E(S)$ of elementary solutions is dense in the space of solutions of equation $ (*)$ that belong to $ H(D,U)$.


References [Enhancements On Off] (What's this?)

  • 1. L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., vol. 17, Wiley-Intersci. Publ., New York, 1970. MR 0285849 (44:3066)
  • 2. I. F. Krasichkov-Ternovskiĭ, A homogeneous convolution type equation on convex domains, Dokl. Akad. Nauk SSSR 197 (1971), no. 1, 29-31; English transl., Soviet Math. Dokl. 12 (1971), 396-398. MR 0277729 (43:3462)
  • 3. B. Malgrange, Existence et approximation des solutions des équations dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-355. MR 0086990 (19:280a)
  • 4. L. Ehrenpreis, Mean periodic function, Amer. J. Math. 77 (1955), 293-328. MR 0070047 (16:1122d)
  • 5. V. V. Napalkov, Convolution equations in multidimensional spaces, Nauka, Moscow, 1982. (Russian) MR 0678923 (86g:46054)
  • 6. R. S. Yulmukhametov, Homogeneous convolution equations, Dokl. Akad. Nauk SSSR 316 (1991), no. 2, 312-315; English transl., Soviet Math. Dokl. 43 (1991), no. 1, 101-103. MR 1100598 (92c:32005)
  • 7. O. V. Epifanov, Duality of a pair of spaces of analytic functions of bounded growth, Dokl. Akad. Nauk SSSR 319 (1991), no. 6, 1297-1300; English transl., Soviet Math. Dokl. 44 (1992), no. 1, 314-317. MR 1150105 (93d:46039)
  • 8. N. F. Abuzyarova and R. S. Yulmukhametov, Dual spaces of weighted spaces of analytic functions, Sibirsk. Mat. Zh. 42 (2001), no. 1, 3-17; English transl., Siberian Math. J. 42 (2001), no. 1, 1-14. MR 1830787 (2002c:46047)
  • 9. A. Grothendieck, Sur les espaces $ (F)$ et $ (DF)$, Summa Brasil. Math. 3 (1954), 57-123. MR 0075542 (17:765b)
  • 10. A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6, 3-58; English transl., Russian Math. Surveys 47 (1992), no. 6, 1-56. MR 1209144 (94e:32003)
  • 11. N. Sibony, Approximation polynomiale pondérée dans un domaine d'holomorphie de $ \mathbb{C}^n$, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, 77-99. MR 0430312 (55:3317)
  • 12. L. I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, Moscow, 1971; English transl., Transl. Math. Monogr., vol. 44, Amer. Math. Soc., Providence, RI, 1974. MR 0320357 (47:8896); MR 0346175 (49:10901)
  • 13. I. F. Krasichkov-Ternovskiĭ, Estimates for a subharmonic difference of subharmonic functions. I, Mat. Sb. (N. S.) 102(144) (1977), no. 2, 216-247; English transl., Math. USSR-Sb. 31 (1977), no. 2, 191-218. MR 0507987 (58:22602)
  • 14. L. Hörmander, An introduction to complex analysis in several variables, North-Holland Math. Library, vol. 7, North-Holland Publ. Co., Amsterdam, 1990. MR 1045639 (91a:32001)
  • 15. R. T. Rockafellar, Convex analysis, Princeton Math. Ser., vol. 28, Princeton Univ. Press, Princeton, NJ, 1970. MR 0274683 (43:445)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 32A50, 45E10, 46E10

Retrieve articles in all journals with MSC (2000): 32A50, 45E10, 46E10


Additional Information

R. S. Yulmukhametov
Affiliation: Institute of Mathematics with Computing Centre, 112 Chernyshevsky Street, Ufa 450077, Russia
Email: Yulmukhametov@mail.ru

DOI: https://doi.org/10.1090/S1061-0022-10-01098-8
Keywords: Weighted spaces of analytic functions, convolution operator, spectral synthesis
Received by editor(s): April 2, 2007
Published electronically: January 26, 2010
Additional Notes: Supported by RFBR (grant 06-01-00516-a.)
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society