Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Five-vertex model with fixed boundary conditions


Author: N. M. Bogolyubov
Translated by: the author
Original publication: Algebra i Analiz, tom 21 (2009), nomer 3.
Journal: St. Petersburg Math. J. 21 (2010), 407-421
MSC (2000): Primary 81T25
DOI: https://doi.org/10.1090/S1061-0022-10-01100-3
Published electronically: February 25, 2010
MathSciNet review: 2588762
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The exactly solvable five-vertex model on a square lattice with fixed boundary conditions is considered. Application of the algebraic Bethe ansatz makes it possible to express the partition function and the boundary correlation functions of the nonhomogeneous model in the determinantal form. The relationship established between the homogeneous model and plane partitions helps to calculate its partition function.


References [Enhancements On Off] (What's this?)

  • 1. R. J. Baxter, Exactly solved models in statistical mechanics, Acad. Press, Inc., London, 1982. MR 0690578 (86i:82002a)
  • 2. E. H. Lieb and F. Y. Wu, Phase transitions and critical phenomena. Vol. 1, Acad. Press, London, 1972.
  • 3. V. E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418. MR 0677006 (83m:81078)
  • 4. V. Korepin and P. Zinn-Justin, Thermodynamic limit of the six-vertex model with domain wall boundary conditions, J. Phys. A 33 (2000), 7053-7066. MR 1792450 (2001h:82018)
  • 5. N. M. Bogoliubov, A. V. Kitaev, and M. B. Zvonarev, Boundary polarization in the six-vertex model, Phys. Rev. E (3) 65 (2002), no. 2, 026126, 4 pp. MR 1922214 (2003f:82011)
  • 6. N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, Boundary correlation functions of the six-vertex model, J. Phys. A 35 (2002), no. 27, 5525-5541. MR 1917248 (2003d:82018)
  • 7. D. Allison and N. Reshetikhin, Numerical study of the $ 6$-vertex model with domain wall boundary conditions, Ann. Inst. Fourier (Grenoble) 55 (2005), 1847-1869. MR 2187938 (2006i:82007)
  • 8. O. Syljuåsen and M. Zvonarev, Directed-loop Monte Carlo simulations of vertex models, Phys. Rev. E (3) 70 (2004), 016118.
  • 9. I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford Univ. Press, New York, 1979. MR 0553598 (84g:05003)
  • 10. D. M. Bressoud, Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge Univ. Press, Cambridge, 1999. MR 1718370 (2000i:15002)
  • 11. G. Kuperberg, Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Not. 1996, no. 3, 139-150. MR 1383754 (97c:05009)
  • 12. F. Colomo and A. C. Pronko, Square ice, alternating sign matrices, and classical orthogonal polynomials, J. Stat. Mech. Theory Exp. 2005, no. 1, 005, 33 pp. (electronic). MR 2114554 (2006d:82020)
  • 13. P. L. Ferrari and H. Spohn, Domino tilings and the six-vertex model at its free fermion point, J. Phys. A 39 (2006), 10297-10306. MR 2256593 (2007k:82015)
  • 14. N. M. Bogolyubov, Boxed plane partitions as an exactly solvable boson model, J. Phys. A 38 (2005), 9415-9430. MR 2187995 (2008b:05014)
  • 15. -, Enumeration of plane partitions and the algebraic Bethe ansatz, Teoret. Mat. Fiz. 150 (2007), no. 2, 193-203; English transl., Theoret. and Math. Phys. 150 (2007), no. 2, 165-174. MR 2325923 (2008g:82017)
  • 16. N. V. Tsilevich, The quantum inverse scattering problem method for the $ q$-boson model, and symmetric functions, Funktsional. Anal. i Prilozhen. 40 (2006), no. 3, 53-65; English transl., Funct. Anal. Appl. 40 (2006), no. 3, 207-217. MR 2265685 (2008c:81205)
  • 17. K. Shigechi and M. Uchiyama, Boxed skew plane partition and integrable phase model, J. Phys. A 38 (2005), 10287-10306. MR 2185936 (2007g:82013)
  • 18. N. M. Bogolyubov, A four-vertex model, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 347 (2007), 34-55; English transl., J. Math. Sci. (New York) 151 (2008), no. 2, 2816-2828. MR 2458883 (2009j:82021)
  • 19. -, A four-vertex model and random tilings, Teoret. Mat. Fiz. 155 (2008), no. 1, 25-38; English transl. in Theoret. and Math. Phys. 155 (2008), no. 1. MR 2466477
  • 20. J. D. Noh and D. Kim, Interacting domain walls and the five-vertex model, Phys. Rev. E 49 (1994), 1943.
  • 21. L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett. 68 (1992), 725-728. MR 1147356 (92h:82037)
  • 22. R. Rajesh and D. Dhar, An exactly solvable anisotropic directed percolation model in three dimensions, Phys. Rev. Lett. 81 (1998), 1646.
  • 23. L. A. Takhtadzhyan and L. D. Faddeev, The quantum method for the inverse problem and the $ XYZ$ Heisenberg model, Uspekhi Mat. Nauk 34 (1979), no. 5, 13-63; English transl. in Russian Math. Surveys 34 (1979), no. 5. MR 0562799 (81d:82066)
  • 24. L. D. Faddeev, Quantum completely integrable models in field theory, Mathematical Physics Reviews, Vol. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., vol. 1, Harwood Acad., Chur, 1980, pp. 107-155. MR 0659263 (83h:81044)
  • 25. P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, Lecture Notes in Phys., vol. 151, Springer, Berlin-New York, 1982, pp. 61-119. MR 0671263 (84m:81114)
  • 26. N. M. Bogolyubov, A. G. Izergin, and V. E. Korepin, Correlation functions of integrable systems and the quantum inverse problem method, Nauka, Moscow, 1992. (Russian) MR 1225798 (95j:81240)
  • 27. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993. MR 1245942 (95b:81224)
  • 28. N. M. Bogoliubov and T. Nassar, On the spectrum of the non-Hermitian phase-difference model, Phys. Lett. A 234 (1997), 345-350. MR 1482499 (98j:82017)
  • 29. D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model, Phys. Rev. E 52 (1995), 3512.
  • 30. A. G. Izergin, D. A. Coker, and V. E. Korepin, Determinant formula for the six-vertex model, J. Phys. A 25 (1992), 4315-4334. MR 1181591 (94d:82016)
  • 31. L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46 (1992), 844.
  • 32. V. B. Priezzhev, Exact nonstationary probabilities in the asymmetric exclusion process on a ring, Phys. Rev. Lett. 91 (2003), 050601.
  • 33. O. Golinelli and K. Mallick, The asymmetric simple exclusion process : an integrable model for non-equilibrium statistical mechanics, J. Phys. A 39 (2006), 12679-12705. MR 2277454 (2008d:82054)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 81T25

Retrieve articles in all journals with MSC (2000): 81T25


Additional Information

N. M. Bogolyubov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
Email: bogoliub@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-10-01100-3
Keywords: Exactly solvable 5-vertex model, square lattice, partition function, boundary correlation function
Received by editor(s): April 1, 2008
Published electronically: February 25, 2010
Additional Notes: Partially supported by RFBR (project no. 07-01-00358)
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society