Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

An exotic invariant for 6-manifolds: The direct construction


Author: A. V. Zhubr
Translated by: the author
Original publication: Algebra i Analiz, tom 21 (2009), nomer 3.
Journal: St. Petersburg Math. J. 21 (2010), 469-482
MSC (2000): Primary 57N15, 57R55
DOI: https://doi.org/10.1090/S1061-0022-10-01104-0
Published electronically: March 1, 2010
MathSciNet review: 2588766
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some of the author's previous works, dealing with the classification problem for simply connected closed 6-manifolds, contain a construction of a certain ``exotic'' invariant $ \Gamma$. This construction is substantially indirect and based on nontrivial calculations. In the present paper, a direct construction is suggested, which does not depend on the calculations mentioned and involves only some simple surgery, plus some well-known identities for Stiefel-Whitney and Pontryagin classes, namely, ``modulo 2'' and ``modulo 4'' Wu formulas.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Zhubr, Classification of simply-connected topological 6-manifolds, Topology and Geometry--Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 325-339. MR 0970082 (89k:57065)
  • 2. -, Closed simply connected $ 6$-manifolds: the proofs of classification theorems, Algebra i Analiz 12 (2000), no. 4, 126-230; English transl., St. Petersburg Math. J. 12 (2001), no. 4, 605-680. MR 1793619 (2001j:57041)
  • 3. F. Quinn, Ends of maps. III. Dimensions 4 and 5, J. Differential Geom. 17 (1982), 503-521. MR 0679069 (84j:57012)
  • 4. F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., Bd. 131, Springer-Verlag New York, Inc., New York, 1966. MR 0202713 (34:2573)
  • 5. P. E. Jupp, Classification of certain 6-manifolds, Proc. Cambridge Philos. Soc. 73 (1973), 293-300. MR 0314074 (47:2626)
  • 6. L. C. Siebenmann, Topological manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970), T. 2, Gauthier-Villars, Paris, 1971, pp. 133-163. MR 0423356 (54:11335)
  • 7. R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. Math. Stud., No. 88, Princeton Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo, 1977. MR 0645390 (58:31082)
  • 8. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453. MR 0679066 (84b:57006)
  • 9. A. Haefliger, Knotted $ (4k-1)$-spheres in $ 6k$-space, Ann. of Math. (2) 75 (1962), 452-466. MR 0145539 (26:3070)
  • 10. C. T. C. Wall, Classification problems in differential topology. $ \mathrm{V}$. On certain $ \mathrm{6}$-manifolds, Invent. Math. 1 (1966), 355-374. MR 0215313 (35:6154)
  • 11. A. V. Zhubr, Spin bordism of oriented manifolds and the Hauptvermutung for $ \mathrm{6}$-manifolds, Topology, Ergodic Theory, Real Algebraic Geometry (V. Turaev, A. Vershik, eds.), Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 263-286. MR 1819194 (2002b:57034)
  • 12. Wen-tsün Wu, On Pontrjagin classes. III, Acta Math. Sinica 4 (1954), 323-346. MR 0080300 (18:225f)
  • 13. R. Mosher and M. Tangora, Cohomology operations and applications in homotopy theory, Harper and Row, New York-London, 1968. MR 0226634 (37:2223)
  • 14. J. Cerf, Sur les difféomorphismes de la sphère de dimension trois $ (\Gamma_4=0)$, Lecture Notes in Math., vol. 53, Springer-Verlag, Berlin-New York, 1968. MR 0229250 (37:4824)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 57N15, 57R55

Retrieve articles in all journals with MSC (2000): 57N15, 57R55


Additional Information

A. V. Zhubr
Affiliation: Mathematics Department, Komi Scientific Center, Urals Division, Russian Academy of Sciences, Chernova Street 3a, Syktyvkar 167998, Russia
Email: a-v-zhubr@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-10-01104-0
Keywords: 6-manifold, classification, surgery, direct construction, invariant
Received by editor(s): May 20, 2008
Published electronically: March 1, 2010
Additional Notes: This work is partially supported by the program “Problems in non-linear dynamics” of the Presidium of Russian Academy of Sciences
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society