Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

General solution of the Yang-Baxter equation with symmetry group $ \mathrm{SL}(\mathit{n},\mathbb{C})$


Authors: S. E. Derkachev and A. N. Manashov
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 21 (2009), nomer 4.
Journal: St. Petersburg Math. J. 21 (2010), 513-577
MSC (2010): Primary 81R12
DOI: https://doi.org/10.1090/S1061-0022-2010-01106-3
Published electronically: May 20, 2010
MathSciNet review: 2584208
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of constructing the $ \mathrm{R}$-matrix is considered in the case of an integrable spin chain with symmetry group $ \mathrm{SL}(\mathit{n},\mathbb{C})$. A fairly complete study of general $ \mathrm{R}$-matrices acting in the tensor product of two continuous series representations of $ \mathrm{SL}(n,\mathbb{C})$ is presented. On this basis, $ \mathrm{R}$-matrices are constructed that act in the tensor product of Verma modules (which are infinite-dimensional representations of the Lie algebra $ \mathrm{sl}(n)$), and also $ \mathrm{R}$-matrices acting in the tensor product of finite-dimensional representations of the Lie algebra $ \mathrm{sl}(n)$.


References [Enhancements On Off] (What's this?)

  • 1. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, The quantum inverse problem method. I, Teor. Mat. Fiz. 40 (1979), no. 2, 194-220; English transl., Theor. and Math. Phys. 40 (1979), no. 2, 688. MR 0549615 (82g:81087)
  • 2. L. A. Takhtadzhyan and L. D. Faddeev, The quantum method for the inverse problem and the $ \mathbf{XYZ}$ Heisenberg model, Uspekhi Mat. Nauk 34 (1979), no. 5, 13-63; English transl. in Russian Math. Surveys 34 (1979), no. 5. MR 0562799 (81d:82066)
  • 3. P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, Lecture Notes in Phys., vol. 151, Springer, Berlin-New York, 1982, pp. 61-119. MR 0671263 (84m:81114)
  • 4. E. K. Sklyanin, Quantum inverse scattering method. Selected topics, Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys. (Mo-Lin Ge, ed.), World Sci. Publ., River Edge, NJ, 1992, pp. 63-97; hep-th/9211111. MR 1239668
  • 5. L. D. Faddeev, How the algebraic Bethe ansatz works for integrable models, Quantum Symmetries/Symétries Quantiques (Les Houches, 1995) (A. Connes, K. Kawedzki, J. Zinn-Justin, eds.), North-Holland, Amsterdam, 1998, pp. 149-219; hep-th/9605187. MR 1616371 (2000b:82010)
  • 6. P. P. Kulish and E. K. Sklyanin, On the solutions of the Yang-Baxter equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 95 (1980), 129-160; English transl. in J. Soviet Math. 19 (1982), no. 5. MR 0606023 (82i:82018)
  • 7. M. Jimbo, Introduction to the Yang-Baxter equation, Internat. J. Modern Phys. A 4 (1989), 3759-3777. MR 1017340 (90j:82001)
  • 8. M. Jimbo (ed.), Yang-Baxter equation in integrable systems, Adv. Ser. Math. Phys., vol. 10, World Sci. Publ. Co., Inc., Teaneck, NJ, 1989. MR 1061379 (91e:82003)
  • 9. V. G. Drinfel'd, Hopf algebras and Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060-1064; English transl., Soviet Math. Dokl. 32 (1985), no. 1, 254-258. MR 0802128 (87k:58080)
  • 10. -, Quantum groups, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798-820. MR 0934283 (89f:17017)
  • 11. R. J. Baxter, Exactly solved models in statistical mechanics, Acad. Press, Inc., London, 1982. MR 0690578 (86i:82002a)
  • 12. B. Sutherland, A general model for multicomponent quantum systems, Phys. Rev. B 12 (1975), 3795.
  • 13. P. P. Kulish and N. Yu. Reshetikhin, On $ GL_{3}$-invariant solutions of the Yang-Baxter equation and associated quantum systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 120 (1982), 92-121; English transl. in J. Soviet Math. 34 (1986), no. 5. MR 0701555 (84i:58058)
  • 14. -, Diagonalisation of $ GL(N)$ invariant transfer matrices and quantum $ N$-wave system (Lee model), J. Phys. A 16 (1983), L591-L596. MR 0727044 (84m:82034)
  • 15. E. K. Sklyanin, The quantum Toda chain, Nonlinear Equations in Classical and Quantum Field Theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., vol. 226, Springer, Berlin, 1985, pp. 196-233; Functional Bethe ansatz, Integrable and Superintegrable Systems (B. A. Kupershmidt, ed.), World Sci. Publ., Teaneck, NJ, 1990, pp. 8-33. MR 0802110 (86k:81068); MR 1091258 (92e:82031)
  • 16. M. Gaudin and V. Pasquier, The periodic Toda chain and a matrix generalization of the Bessel function recursion relations, J. Phys. A 25 (1992), 5243-5252. MR 1192958 (94a:82023)
  • 17. L. N. Lipatov, High-energy asymptotics of multicolor $ QCD$ and exactly solvable spin models, Pis'ma Zh. Èksper. Teor. Fiz. 59 (1994), no. 9-10, 571-574; English transl., JETP Lett. 59 (1994), 596.
  • 18. -, Duality symmetry of reggeon interactions in multicolor $ QCD$, Nuclear Phys. B 548 (1999), 328.
  • 19. L. D. Faddeev and G. P. Korchemsky, High-energy $ QCD$ as a completely integrable model, Phys. Lett. B 342 (1995), 311.
  • 20. D. Karakhanyan and R. Kirschner, Conserved currents of the three-reggeon interaction, hep-th/9902147; High-energy scattering in gauge theories and integrable spin chains, Fortschr. Phys. 48 (2000), 139-142; hep-th/9902031. MR 1764063
  • 21. S. E. Derkachov, G. P. Korchemsky, and A. N. Manashov, Noncompact Heisenberg spin magnets from high-energy $ QCD$. I. Baxter $ Q$-operator and separation of variables, Nuclear Phys. B 617 (2001), 375-440; arXiv:hep-th/0107193. MR 1866770 (2002h:81291)
  • 22. M. Kirch and A. N. Manashov, Noncompact $ SL(2,R)$ spin chain, J. High Energy Phys. 2004, no. 6, 035, 31 pp. (electronic). MR 2084421 (2005h:82032)
  • 23. A. G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006), no. 41, 12927-12981; arXiv:hep-th/0602093. MR 2277462 (2008a:82019)
  • 24. S. E. Derkachov, Baxter's $ Q$-operator for the homogeneous XXX spin chain, J. Phys. A 32 (1999), 5299-5316; arXiv:solv-int/9902015. MR 1720341 (2000i:82025)
  • 25. V. B. Kuznetsov, M. Salerno, and E. K. Sklyanin, Quantum Bäcklund transformation for the integrable DST model, J. Phys. A 33 (2000), 171-189; arXiv:solv-int/9908002. MR 1748470 (2001j:81094)
  • 26. G. P. Pronko, On Baxter's $ Q$-operator for the XXX spin chain, Comm. Math. Phys. 212 (2000), 687-701; hep-th/9908179. MR 1779164 (2001m:82024)
  • 27. A. E. Kovalsky and G. P. Pronko, Baxter $ Q$-operators for integrable $ DST$ chain, nlin.SI/0203030.
  • 28. -, Baxter's $ Q$-operators for the simplest $ q$-deformed model, nlin.SI/0307040.
  • 29. A. Y. Volkov, Quantum lattice $ KdV$ equation, Lett. Math. Phys. 39 (1997), 313-329. MR 1449577 (98h:58096)
  • 30. A. Antonov and B. Feigin, Quantum group representations and Baxter equation, Phys. Lett. B 392 (1997), 115-122; hep-th/9603105. MR 1435226 (98e:81066)
  • 31. A. A. Belavin, A. V. Odessky, and R. A. Usmanov, New relations in the algebra of the Baxter $ Q$-operators, hep-th/0110126; Teor. Mat. Fiz. 130 (2002), no. 3, 383-413; English transl., Theor. and Math. Phys. 130 (2002), no. 3, 323-350. MR 1920471 (2003i:81102)
  • 32. M. Rossi and R. Weston, A generalized $ Q$-operator for $ U_q(\widehat{sl_2})$ vertex models, J. Phys. A 35 (2002), 10015-10032; math-ph/0207004. MR 1957841 (2004c:81129)
  • 33. A. Zabrodin, Commuting difference operators with elliptic coefficients from Baxter's vacuum vectors, J. Phys. A 33 (2000), 3825-3850; math.QA/9912218. MR 1767042 (2001i:82032)
  • 34. C. Korff, Representation theory and Baxter's $ TQ$ equation for the six-vertex model. A pedagogical overview, arXiv:cond-mat/0411758. MR 2184024 (2006i:17022)
  • 35. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory. I-III, Comm. Math. Phys. 177 (1996), 381-398; arXiv:hep-th/9412229; 190 (1997), 247-278; arXiv:hep-th/9604044; 200 (1999), 297-324; arXiv:hep-th/9805008. MR 1384140 (97c:81165); MR 1489571 (99h:81191); MR 1673992 (2000j:81238)
  • 36. V. V. Bazhanov, A. N. Hibberd, and S. M. Khoroshkin, Integrable structure of $ W(3)$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nuclear Phys. B 622 (2002), 475-547; arXiv:hep-th/0105177. MR 1880098 (2003d:81106)
  • 37. V. V. Bazhanov and Z. Tsuboi, Baxter's $ Q$-operators for supersymmetric spin chains, Nuclear Phys. B 805 (2008), 451-516; arXiv:hep-th/0805.4274. MR 2449804 (2009k:82038)
  • 38. S. M. Khoroshkin and V. N. Tolstoy, Universal $ R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617. MR 1134942 (93a:16031)
  • 39. -, The uniqueness theorem for the universal $ R$-matrix, Lett. Math. Phys. 24 (1992), 231-244. MR 1166753 (93e:17020)
  • 40. S. M. Khoroshkin, A. A. Stolin, and V. N. Tolstoy, Generalized Gauss decomposition of trigonometric $ R$-matrices, Modern Phys. Lett. A 10 (1995), 1375-1392. MR 1341337 (96g:81094)
  • 41. T. Kojima, Baxter's Q-operator for the $ W$-algebra $ W_N$, J. Phys. A 41 (2008), arXiv:nlin./0803. 3505. MR 2426018
  • 42. S. E. Derkachov, Factorization of the $ R$-matrix and Baxter's $ Q$-operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 347 (2007), 144-166; English transl., J. Math. Sci. (New York) 151 (2008), no. 2, 2880-2893; arXiv:math.qa/0503396, math.qa/0507252. MR 2458889 (2009i:81060)
  • 43. S. E. Derkachov and A. N. Manashov, Factorization of the transfer matrices for the quantum $ s\ell(2)$ spin chains and Baxter equation, J. Phys. A 39 (2006), 4147-4159; arXiv: nlin.si/05012047. MR 2220363 (2007d:82018)
  • 44. -, Baxter operators for the noncompact quantum $ s\ell(3)$ invariant spin chain, J. Phys. A 39 (2006), 13171-13190; arXiv:nlin.si/0604018. MR 2266052 (2007k:82028)
  • 45. A. V. Belitsky, S. E. Derkachov, G. P. Korchemsky, and A. N. Manashov, The Baxter $ Q$-operator for the graded $ SL(2\vert 1)$ spin chain, J. Stat. Mech. Theory Exp. 2007, no. 1, PO1005, 63 pp. (electronic); arXiv:hep-th/0610332. MR 2284009 (2008g:81105)
  • 46. S. E. Derkachov and A. N. Manashov, $ \mathbb{R}$-matrix and Baxter $ \mathbb{Q}$-operators for the noncompact $ SL(N,\mathbb{C})$ invariant spin chain, SIGMA 2 (2006), Paper 084; arXiv:nlin.SI/0612003. MR 2264900 (2008g:81119)
  • 47. S. E. Derkachov, Factorization of the R-matrix. I, II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 335 (2006), 134-187; English transl., J. Math. Sci. (New York) 143 (2007), no. 1, 2773-2805; arXiv: math.qa/0503396, math.qa/0503396. MR 2269755 (2007i:81112); MR 2269756 (2007i:81113)
  • 48. I. M. Gel'fand and G. E. Shilov, Generalized functions. Vol. 1. Generalized functions and operations on them, ``Fizmatgiz'', Moscow, 1959; English transl., Acad. Press, New York-London, 1964 [1977]. MR 0097715 (20:4182); MR 0435831 (55:8786a)
  • 49. I. M. Gel'fand and M. I. Naimark, Unitary representations of the classical groups, Trudy Mat. Inst. Steklov. 36 (1950), 288 pp. (Russian) MR 0046370 (13:722f)
  • 50. I. M. Gel'fand, M. I. Naimark, and N. Ya. Vilenkin, Generalized functions. Vol. 5. Integral geometry and related problems in the theory of representations, ``Fizmatgiz'', Moscow, 1962; English transl., Acad. Press, New York-London, 1966 [1977]. MR 0160110 (28:3324); MR 0435835 (55:8786e)
  • 51. D. P. Zhelobenko, Classical groups. Spectral analysis of finite-dimensional representations, Uspekhi Mat. Nauk 17 (1962), no. 1, 27-120; English transl. in Russian Math. Surveys 17 (1962), no. 1. MR 0136664 (25:129)
  • 52. -, Compact Lie groups and their representations, ``Nauka'', Moscow, 1970; English transl., Transl. Math. Monogr., vol. 40, Amer. Math. Soc., Providence, RI, 1973. MR 0473097 (57:12776a); MR 0473098 (57:12776b)
  • 53. M. A. Naĭmark, Representation theory of groups, ``Nauka'', Moscow, 1976. (Russian) MR 0578530 (58:28245)
  • 54. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Ergeb. Math. Grenzgeb., Bd. 14, Springer-Verlag, New York-Heidelberg, 1972. MR 0349820 (50:2313)
  • 55. A. W. Knapp, Representation theory of semisimple groups. An overview based on examples, Princeton Math. Ser., vol. 36, Princeton Univ. Press, Princeton, NJ, 1986. MR 0855239 (87j:22022)
  • 56. P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981), 393-403. MR 0649704 (83g:81099)
  • 57. A. N. Vasil'ev, Quantum field renormalization group in the critical behavior theory and in stochastic dynamics, S.-Peterburg. Inst. Yader. Fiz., St. Petersburg, 1998. (Rissian)
  • 58. A. Yu. Volkov, Noncommutative hypergeometry, Comm. Math. Phys. 258 (2005), 257-273; arXiv:math/0312084. MR 2171695 (2007c:33017)
  • 59. A. P. Isaev, Multi-loop Feynman integrals and conformal quantum mechanics, Nuclear Phys. B 662 (2003), 461-475; arXiv:hep-th/0303056. MR 1985276 (2004i:81167)
  • 60. E. K. Sklyanin, Classical limits of $ SU(2)$-invariant solutions of the Yang-Baxter equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 146 (1985), 119-136; English transl., J. Soviet Math. 40 (1988), no. 1, 93-107. MR 0836552 (87m:81135)
  • 61. G. Gasper, Elementary derivations of summation and transformation formulas for $ q$-series, Spectral Functions, $ q$-Series and Related Topics (Toronto, ON, 1995), Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence, RI, 1997, pp. 55-70. MR 1448679 (98f:33030)
  • 62. G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl., vol. 35, Cambridge Univ. Press, Cambridge, 1990. MR 1052153 (91d:33034)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 81R12

Retrieve articles in all journals with MSC (2010): 81R12


Additional Information

S. E. Derkachev
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: derkach@pdmi.ras.ru

A. N. Manashov
Affiliation: Physics Department, St. Petersburg State University, Ulyanovskaya 3, St. Petersburg 198504, Russia and Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
Email: alexander.manashov@physik.uni-regensburg.de

DOI: https://doi.org/10.1090/S1061-0022-2010-01106-3
Keywords: R-matrix, quantum inverse problem method, algebraic Bethe ansatz, Baxter operator
Received by editor(s): November 19, 2008
Published electronically: May 20, 2010
Additional Notes: Supported by RFBR, grants 07-02-92166-CNRS_a and 09-01-93108-CNRS_a (the first and the second author), grants 08-01-00683_a and 09-01-12150-ofi_m (the first author), National project RNP 2.1.1/1575 and German Research Foundation (DFG) grant 9209282 (the second author).
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society