Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the computation of $ K$-functionals


Author: I. P. Irodova
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 21 (2009), nomer 4.
Journal: St. Petersburg Math. J. 21 (2010), 579-599
MSC (2010): Primary 46E35, 46M35
DOI: https://doi.org/10.1090/S1061-0022-2010-01107-5
Published electronically: May 20, 2010
MathSciNet review: 2584209
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new approach to the calculation of the sharp order of a $ K$-functional is suggested. This approach employs the techniques of dyadic spaces.


References [Enhancements On Off] (What's this?)

  • 1. I. P. Irodova, Dyadic Besov spaces, Algebra i Analiz 12 (2000), no. 3, 40-80; English transl., St. Petersburg Math. J. 12 (2001), no. 3, 379-405. MR 1778190 (2001i:41037)
  • 2. O. V. Besov, V. P. Il'in, and S. M. Nikol'skiĭ, Integral representations of functions, and embedding theorems, Nauka, Moscow, 1975; English transl., V. H. Winston and Sons, Washington; Halsted Press, New York, Vol. I, 1978, Vol. II, 1979. MR 0430771 (55:3776); MR 0519341 (80f:46030a); MR 0521808 (80f:46030b)
  • 3. A. Cohen, R. A. DeVore, P. P. Petrushev, and H. Xu, Nonlinear approximation and the space $ BV(R2)$, Amer. J. Math. 121 (1999), 587-628. MR 1738406 (2000j:41024)
  • 4. N. Ya. Kruglyak and D. M. Nevskiĭ, Near-optimality of algorithms of dyadic approximation in $ L^p([0, 1]^n)$, and real interpolation, Algebra i Analiz 14 (2002), no. 4, 63-90; English transl., St. Petersburg Math. J. 14 (2003), no. 4, 583-602. MR 1935918 (2003i:41002)
  • 5. T. G. Bychkova, Optimal atomic decomposition in dyadic Hardy spaces $ H_p$ and interpolation of spaces $ H_p$, Proc. of All-Russian Sci. Conf., Yaroslavl', 2003, pp. 50-69. (Russian)
  • 6. J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., No. 1, Duke Univ., Durham, NC, 1976. MR 0461123 (57:1108)
  • 7. I. P. Irodova, Properties of the scale of spaces $ B_p^{\lambda\theta}$ for $ 0<p<1$, Dokl. Akad. Nauk SSSR 250 (1980), no. 2, 273-275; English transl., Soviet Math. Dokl. 21 (1980), no. 1, 53-55. MR 0557768 (81k:46032)
  • 8. S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, 2nd ed., ``Nauka'', Moscow, 1977; English transl. of 1st ed., Grundlehren Math. Wiss., Bd. 205, Springer-Verlag, New York-Heidelberg. MR 0506247 (81f:46046); MR 0374877 (51:11073)
  • 9. I. P. Irodova, Generalization of the Marchaud inequality, Studies in the Theory of Functions of Several Real Variables, Yaroslav. Gos. Univ., Yaroslavl', 1984, pp. 63-69. (Russian) MR 0830218 (87j:41046)
  • 10. -, Properties of functions defined by the rate of decrease of piecewise-polynomial approximation, Studies in the Theory of Functions of Several Real Variables, Yaroslav. Gos. Univ., Yaroslavl', 1980, pp. 92-117. (Russian) MR 0712504 (84m:41012)
  • 11. R. A. DeVore, B. Jawerth, and V. A. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), 737-785. MR 1175690 (94a:42045)
  • 12. R. A. DeVore, P. P. Petrushev, and X. M. Yu, Nonlinear wavelet approximation in the space $ C(R^d)$, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 261-283. MR 1240786 (94h:41070)
  • 13. Rong-Qing Jia, A Bernstein-type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), 299-318. MR 1215774 (94h:41026)
  • 14. Yu. A. Brudnyĭ, Spaces that are definable by means of local approximations, Trudy Moskov. Mat. Obshch. 24 (1971), 69-132; English transl. in Trans. Moscow Math. Soc. 24 (1974). MR 0390747 (52:11570)
  • 15. É. A. Storozhenko and P. Oswald, Jackson's theorem in the spaces $ L^p(R^k)$, $ 0<p<1$, Sibirsk. Mat. Zh. 19 (1978), no. 4, 888-901; English transl., Siberian Math. J. 19 (1978), no. 4, 630-640 (1979). MR 0493121 (58:12154)
  • 16. M. V. Nevskiĭ, On the rate of the piecewise-polynomial approximation for functions from Orlicz classes, Yaroslav. Gos. Univ., Yaroslavl', 1986. (Manuscript deposed VINITI 06.05.86, No. 3225-B). (Russian)
  • 17. I. P. Irodova, On certain properties of dyadic Besov spaces, Functional Spaces. Differential Operators. Problems of the Mathematical Education (Proc. Internat. Conf.). Vol. 1, Ross. Univ. Druzhby Narodov, Moscow, 1998, pp. 78-81. (Russian)
  • 18. -, Dyadic Nikol'skiĭ-Besov spaces and their relationship to classical spaces, Mat. Zametki 83 (2008), no. 5, 683-695; English transl., Math. Notes 83 (2008), no. 5-6, 624-634. MR 2451357 (2010a:46079)
  • 19. R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414. MR 0920166 (89h:46044)
  • 20. C. de Boor and G. J. Fix, Spline approximation by quasiinterpolants, J. Approx. Theory 8 (1973), no. 1, 19-45. MR 0340893 (49:5643)
  • 21. Yu. A. Brudnyĭ, Piecewise polynomial approximation and local approximations, Dokl. Akad. Nauk SSSR 201 (1971), no. 1, 16-18; English transl., Soviet Math. Dokl. 12 (1971), 1591-1594. MR 0290001 (44:7186)
  • 22. I. P. Irodova, Algorithm for a construction of the smooth spline, Mathematics in the Modern World (2nd Russian Scientific and Practical Conf.), Kaluga, 2004, pp. 100-105. (Russian)
  • 23. -, On computation of the $ K$-functional of a pair of $ B$-spaces, Izv. Tul'skogo Gos. Univ. Ser. Mat. Mekh. Inf. 12 (2006), vyp. 1, 109-123. (Russian)
  • 24. -, Dyadic derivatives and their properties, Izv. Tul'skogo Gos. Univ. Ser. Estestv. Nauk 1 (2008), 29-36. (Russian)
  • 25. J. Peetre and G. Sparr, Interpolation of normed Abelian groups, Ann. Mat. Pura Appl. (4) 92(1972), no. 4, 217-262. MR 0322529 (48:891)
  • 26. Yu. A. Brudnyĭ and N. Ya. Kruglyak, A family of approximation spaces, Studies in the Theory of Functions of Several Real Variables, No. 2, Yaroslav. Gos. Univ., Yaroslavl', 1978, pp. 15-42. (Russian) MR 0559913 (81m:46101)
  • 27. J. Peetre and E. Svensson, On the generalized Hardy's inequality of McGehee, Pigno and Smith and the problem of interpolation between BMO and a Besov space, Math. Scand. 54 (1984), 221-241. MR 0757464 (86h:46057)
  • 28. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • 29. Yu. A. Brudnyĭ, Rational approximation and imbedding theorems, Dokl. Akad. Nauk SSSR 247 (1979), no. 2, 269-272; English transl., Soviet Math. Dokl. 20 (1979), no. 4, 681-684. MR 0545347 (81d:41016)
  • 30. P. P. Petrushev, Direct and converse theorems for spline and rational approximation and Besov spaces, Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer-Verlag, Berlin, 1988, pp. 363-377. MR 0942281 (89d:41027)
  • 31. Yu. A. Brudnyĭ and I. P. Irodova, Nonlinear spline approximation of functions and $ B$-spaces, Proc. Internat. Conf. on the Theory of Approximation of Functions (Kiev, 1983), Nauka, Moscow, 1987, pp. 1-75. (Russian)
  • 32. -, Approximation of functions of several variables by nonlinear splines, Theory of Approximation of Functions (All-Union Workshop): Thesis, Akad. Nauk Ukrain. SSR. Inst. Mat., Kiev, 1989, pp. 27. (Russian)
  • 33. -, Nonlinear spline approximation of functions of several variables and $ B$-spaces, Algebra i Analiz 4 (1992), no. 6, 45-79; English transl., St. Petersburg Math. J. 4 (1993), no. 4, 667-694. MR 1190782 (93i:41023)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46E35, 46M35

Retrieve articles in all journals with MSC (2010): 46E35, 46M35


Additional Information

I. P. Irodova
Affiliation: P. G. Demidov Yaroslavl State University, 14 Sovetskaya Street, Yaroslavl 15000, Russia
Email: Irodov@adm.yar.ru

DOI: https://doi.org/10.1090/S1061-0022-2010-01107-5
Keywords: $K$-functional, dyadic space, interpolation theory, approximation, piecewise polynomial functions
Received by editor(s): June 5, 2008
Published electronically: May 20, 2010
Additional Notes: Supported by RFBR (grant no. 07-01-00385)
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society