Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the computation of $ K$-functionals


Author: I. P. Irodova
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 21 (2009), nomer 4.
Journal: St. Petersburg Math. J. 21 (2010), 579-599
MSC (2010): Primary 46E35, 46M35
DOI: https://doi.org/10.1090/S1061-0022-2010-01107-5
Published electronically: May 20, 2010
MathSciNet review: 2584209
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new approach to the calculation of the sharp order of a $ K$-functional is suggested. This approach employs the techniques of dyadic spaces.


References [Enhancements On Off] (What's this?)

  • 1. I. P. Irodova, Dyadic Besov spaces, Algebra i Analiz 12 (2000), no. 3, 40–80 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 12 (2001), no. 3, 379–405. MR 1778190
  • 2. O. V. Besov, V. P. Il′in, and S. M. Nikol′skiĭ, \cyr Integral′nye predstavleniya funktsiĭ i teoremy vlozheniya., Izdat. “Nauka”, Moscow, 1975 (Russian). MR 0430771
  • 3. Albert Cohen, Ronald DeVore, Pencho Petrushev, and Hong Xu, Nonlinear approximation and the space 𝐵𝑉(𝑅²), Amer. J. Math. 121 (1999), no. 3, 587–628. MR 1738406
  • 4. N. Ya. Kruglyak and D. M. Nevskiĭ, Almost optimality of dyadic approximation algorithms in 𝐿_{𝑝}([0,1]ⁿ), and real interpolation, Algebra i Analiz 14 (2002), no. 4, 63–90 (Russian); English transl., St. Petersburg Math. J. 14 (2003), no. 4, 583–602. MR 1935918
  • 5. T. G. Bychkova, Optimal atomic decomposition in dyadic Hardy spaces $ H_p$ and interpolation of spaces $ H_p$, Proc. of All-Russian Sci. Conf., Yaroslavl', 2003, pp. 50-69. (Russian)
  • 6. Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR 0461123
  • 7. I. P. Irodova, Properties of the scale of spaces $ B_p^{\lambda\theta}$ for $ 0<p<1$, Dokl. Akad. Nauk SSSR 250 (1980), no. 2, 273-275; English transl., Soviet Math. Dokl. 21 (1980), no. 1, 53-55. MR 0557768 (81k:46032)
  • 8. S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR 0374877
  • 9. I. P. Irodova, Generalization of the Marchaud inequality, Studies in the Theory of Functions of Several Real Variables, Yaroslav. Gos. Univ., Yaroslavl', 1984, pp. 63-69. (Russian) MR 0830218 (87j:41046)
  • 10. -, Properties of functions defined by the rate of decrease of piecewise-polynomial approximation, Studies in the Theory of Functions of Several Real Variables, Yaroslav. Gos. Univ., Yaroslavl', 1980, pp. 92-117. (Russian) MR 0712504 (84m:41012)
  • 11. Ronald A. DeVore, Björn Jawerth, and Vasil Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), no. 4, 737–785. MR 1175690, https://doi.org/10.2307/2374796
  • 12. R. A. DeVore, P. Petrushev, and X. M. Yu, Nonlinear wavelet approximation in the space 𝐶(𝑅^{𝑑}), Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 261–283. MR 1240786, https://doi.org/10.1007/978-1-4612-2966-7_11
  • 13. Rong Qing Jia, A Bernstein-type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), no. 2-3, 299–318. MR 1215774, https://doi.org/10.1007/BF01198008
  • 14. Ju. A. Brudnyĭ, Spaces that are definable by means of local approximations, Trudy Moskov. Mat. Obšč. 24 (1971), 69–132 (Russian). MR 0390747
  • 15. È. A. Storoženko and P. Osval′d, Jackson’s theorem in the spaces 𝐿^{𝑝}(𝑅^{𝑘}), 0<𝑝<1, Sibirsk. Mat. Ž. 19 (1978), no. 4, 888–901, 956 (Russian). MR 0493121
  • 16. M. V. Nevskiĭ, On the rate of the piecewise-polynomial approximation for functions from Orlicz classes, Yaroslav. Gos. Univ., Yaroslavl', 1986. (Manuscript deposed VINITI 06.05.86, No. 3225-B). (Russian)
  • 17. I. P. Irodova, On certain properties of dyadic Besov spaces, Functional Spaces. Differential Operators. Problems of the Mathematical Education (Proc. Internat. Conf.). Vol. 1, Ross. Univ. Druzhby Narodov, Moscow, 1998, pp. 78-81. (Russian)
  • 18. I. P. Irodova, Dyadic Nikol′skiĭ-Besov spaces and their relationship to classical spaces, Mat. Zametki 83 (2008), no. 5, 683–695 (Russian, with Russian summary); English transl., Math. Notes 83 (2008), no. 5-6, 624–634. MR 2451357, https://doi.org/10.1134/S0001434608050052
  • 19. R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414. MR 0920166 (89h:46044)
  • 20. C. de Boor and G. J. Fix, Spline approximation by quasiinterpolants, J. Approximation Theory 8 (1973), 19–45. Collection of articles dedicated to Isaac Jacob Schoenberg on his 70th birthday, I. MR 0340893
  • 21. Ju. A. Brudnyĭ, Piecewise polynomial approximation and local approximations, Dokl. Akad. Nauk SSSR 201 (1971), 16–18 (Russian). MR 0290001
  • 22. I. P. Irodova, Algorithm for a construction of the smooth spline, Mathematics in the Modern World (2nd Russian Scientific and Practical Conf.), Kaluga, 2004, pp. 100-105. (Russian)
  • 23. -, On computation of the $ K$-functional of a pair of $ B$-spaces, Izv. Tul'skogo Gos. Univ. Ser. Mat. Mekh. Inf. 12 (2006), vyp. 1, 109-123. (Russian)
  • 24. -, Dyadic derivatives and their properties, Izv. Tul'skogo Gos. Univ. Ser. Estestv. Nauk 1 (2008), 29-36. (Russian)
  • 25. J. Peetre and G. Sparr, Interpolation of normed abelian groups, Ann. Mat. Pura Appl. (4) 92 (1972), 217–262. MR 0322529, https://doi.org/10.1007/BF02417949
  • 26. Yu. A. Brudnyĭ and N. Ya. Kruglyak, A family of approximation spaces, Studies in the Theory of Functions of Several Real Variables, No. 2, Yaroslav. Gos. Univ., Yaroslavl', 1978, pp. 15-42. (Russian) MR 0559913 (81m:46101)
  • 27. J. Peetre and E. Svensson, On the generalized Hardy's inequality of McGehee, Pigno and Smith and the problem of interpolation between BMO and a Besov space, Math. Scand. 54 (1984), 221-241. MR 0757464 (86h:46057)
  • 28. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498, https://doi.org/10.1002/cpa.3160140317
  • 29. Yu. A. Brudnyĭ, Rational approximation and imbedding theorems, Dokl. Akad. Nauk SSSR 247 (1979), no. 2, 269-272; English transl., Soviet Math. Dokl. 20 (1979), no. 4, 681-684. MR 0545347 (81d:41016)
  • 30. P. P. Petrushev, Direct and converse theorems for spline and rational approximation and Besov spaces, Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer-Verlag, Berlin, 1988, pp. 363-377. MR 0942281 (89d:41027)
  • 31. Yu. A. Brudnyĭ and I. P. Irodova, Nonlinear spline approximation of functions and $ B$-spaces, Proc. Internat. Conf. on the Theory of Approximation of Functions (Kiev, 1983), Nauka, Moscow, 1987, pp. 1-75. (Russian)
  • 32. -, Approximation of functions of several variables by nonlinear splines, Theory of Approximation of Functions (All-Union Workshop): Thesis, Akad. Nauk Ukrain. SSR. Inst. Mat., Kiev, 1989, pp. 27. (Russian)
  • 33. Yu. A. Brudnyĭ and I. P. Irodova, Nonlinear spline approximation of functions of several variables and B-spaces, Algebra i Analiz 4 (1992), no. 4, 45–79 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 4, 667–694. MR 1190782

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46E35, 46M35

Retrieve articles in all journals with MSC (2010): 46E35, 46M35


Additional Information

I. P. Irodova
Affiliation: P. G. Demidov Yaroslavl State University, 14 Sovetskaya Street, Yaroslavl 15000, Russia
Email: Irodov@adm.yar.ru

DOI: https://doi.org/10.1090/S1061-0022-2010-01107-5
Keywords: $K$-functional, dyadic space, interpolation theory, approximation, piecewise polynomial functions
Received by editor(s): June 5, 2008
Published electronically: May 20, 2010
Additional Notes: Supported by RFBR (grant no. 07-01-00385)
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society