Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Hölder estimates for solutions of degenerate nondivergence elliptic and parabolic equations

Author: A. I. Nazarov
Translated by: the author
Original publication: Algebra i Analiz, tom 21 (2009), nomer 4.
Journal: St. Petersburg Math. J. 21 (2010), 635-650
MSC (2010): Primary 35B45; Secondary 35J70, 35K65
Published electronically: May 20, 2010
MathSciNet review: 2584211
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We deal with a class of nondivergence type elliptic and parabolic equations degenerating at the coordinate hyperplanes. Assuming that the degeneration is coordinatewise and varies regularly, we prove the Hölder continuity of solutions. Also, the approximative solutions are considered.

References [Enhancements On Off] (What's this?)

  • 1. N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161-175; English transl. in Math. USSR-Izv. 16 (1981), no. 1. MR 0563790 (83c:35059)
  • 2. M. V. Safonov, Harnack's inequality for elliptic equations and Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 272-287; English transl. in J. Soviet math. 21 (1983), no. 5. MR 0579490 (82b:35045)
  • 3. O. A. Ladyzhenskaya and N. N. Ural'tseva, Estimates of the Hölder constant for functions satisfying a uniformly elliptic or uniformly parabolic quasilinear inequality with unbounded coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 147 (1985), 72-94; English transl., J. Soviet Math. 37 (1987), no. 1, 837-851. MR 0821476 (87e:35090)
  • 4. E. B. Fabes and D. W. Stroock, The $ L_p$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), no. 4, 997-1016. MR 0771392 (86g:35057)
  • 5. N. V. Krylov, Boundary inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75-108; English transl., Math. USSR-Izv. 22 (1984), no. 1, 67-98. MR 0688919 (85g:35046)
  • 6. J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 0234118,
  • 7. P. Daskalopoulos and K. Lee, Free-boundary regularity on the focusing problem for the Gauss curvature flow with flat sides, Math. Z. 237 (2001), no. 4, 847–874. MR 1854093,
  • 8. Richard S. Hamilton, Worn stones with flat sides, A tribute to Ilya Bakelman (College Station, TX, 1993) Discourses Math. Appl., vol. 3, Texas A & M Univ., College Station, TX, 1994, pp. 69–78. MR 1423370
  • 9. P. Daskalopoulos and R. Hamilton, The free boundary in the Gauss curvature flow with flat sides, J. Reine Angew. Math. 510 (1999), 187–227. MR 1696096,
  • 10. P. Daskalopoulos and Ki-Ahm Lee, Worn stones with flat sides all time regularity of the interface, Invent. Math. 156 (2004), no. 3, 445–493. MR 2061326,
  • 11. P. Daskalopoulos and Ki-Ahm Lee, Hölder regularity of solutions of degenerate elliptic and parabolic equations, J. Funct. Anal. 201 (2003), no. 2, 341–379. MR 1986693,
  • 12. Yu. A. Alkhutov, On the Hölder continuity of solutions of second-order degenerate elliptic equations in nondivergence form, Dokl. Akad. Nauk 413 (2007), no. 3, 295–300 (Russian); English transl., Dokl. Math. 75 (2007), no. 2, 231–235. MR 2456743,
  • 13. -, Harnack's inequality for solutions of a class of degenerate elliptic equations, Internat. Conf. on Differential Equations and Dynamical Systems (Suzdal', 2006): Thesis, pp. 22-24. (Russian)
  • 14. Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
  • 15. Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR 1415616
  • 16. A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18 (1963), no. 3, 5–29 (Russian, with English summary). MR 0164135
  • 17. N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirsk. Mat. Ž. 17 (1976), no. 2, 290–303, 478 (Russian). MR 0420016
  • 18. A. I. Nazarov and N. N. Ural'tseva, Convex-monotone hulls and an estimate of the msximum of the solution of a parabolic equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 147 (1985), 95-109; English transl., J. Soviet Math. 37 (1987), no. 1, 851-859. MR 0821477 (87h:35039)
  • 19. K. Tso, On an Aleksandrov-Bakel'man type maximum principle for second-order parabolic equations, Comm. Partial Differential Equations 10 (1985), no. 5, 543-553. MR 0790223 (87f:35031)
  • 20. O. A. Ladyzhenskaya and N. N. Ural′tseva, \cyr Lineĭnye i kvazilineĭnye uravneniya èllipticheskogo tipa., Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
    Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627
  • 21. Nikolai Nadirashvili, Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 3, 537–549. MR 1612401
  • 22. Mikhail V. Safonov, Nonuniqueness for second-order elliptic equations with measurable coefficients, SIAM J. Math. Anal. 30 (1999), no. 4, 879–895. MR 1684729,

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35B45, 35J70, 35K65

Retrieve articles in all journals with MSC (2010): 35B45, 35J70, 35K65

Additional Information

A. I. Nazarov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, Petrodvorets, St. Petersburg 198504, Russia

Keywords: Nondivergence equations, H\"older estimates, degeneration, regularly varying functions
Received by editor(s): September 8, 2008
Published electronically: May 20, 2010
Additional Notes: The paper is supported by the grant NSh.227.2008.1 and by RFBR grant 08-01-00748
Dedicated: To my teacher Nina Nikolaevna Ural′tseva on the occasion of her birthday.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society