Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Boundary at infinity of symmetric rank one spaces

Authors: S. Buyalo and A. Kuznetsov
Translated by: the authors
Original publication: Algebra i Analiz, tom 21 (2009), nomer 5.
Journal: St. Petersburg Math. J. 21 (2010), 681-691
MSC (2010): Primary 53C23
Published electronically: July 14, 2010
MathSciNet review: 2604560
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the canonical Carnot-Carathéodory spherical and horospherical metrics, which are defined on the boundary at infinity of every rank one symmetric space of noncompact type, are visual; i.e., they are bi-Lipschitz equivalent with universal bi-Lipschitz constants to the inverse exponent of Gromov products based in the space and on the boundary at infinity respectively.

References [Enhancements On Off] (What's this?)

  • [Bo] Marc Bourdon, Structure conforme au bord et flot géodésique d’un 𝐶𝐴𝑇(-1)-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63–102 (French, with English and French summaries). MR 1341941
  • [BS] Sergei Buyalo and Viktor Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2327160
  • [FS] T. Foertsch and V. Schroeder, Hyperbolicity, $ \mathrm{CAT}(-1)$-spaces and the Ptolemy inequality, arXiv:math/0605418v2.
  • [HI] Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, J. Differential Geom. 12 (1977), no. 4, 481–491 (1978). MR 512919
  • [Ku] A. Kuznetsov, Visibility metrics on the boundary at infinity for the complex hyperbolic plane, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 353 (2008), 70-92; English transl. in J. Math. Sci. (New York) (to appear).
  • [Mo] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004
  • [Pa] Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599,
  • [Wo] Joseph A. Wolf, Spaces of constant curvature, 2nd ed., Department of Mathematics, University of California, Berkeley, Calif., 1972. MR 0343213

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 53C23

Retrieve articles in all journals with MSC (2010): 53C23

Additional Information

S. Buyalo
Affiliation: St. Petersburg Branch, Steklov Institute of Mathematics, Fontanka 27, St. Petersburg 191023, Russia

A. Kuznetsov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii Prospekt 28, Staryi Petergof, St. Petersburg 198504, Russia

Keywords: Carnot–Carathéodory spherical metric, Carnot–Carathédory horospherical metric, visual metric, Gromov product
Received by editor(s): May 20, 2009
Published electronically: July 14, 2010
Additional Notes: Supported by RFBR (grant no. 08-01-00079a)
Article copyright: © Copyright 2010 American Mathematical Society