Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



The inverse Sturm-Liouville problem with mixed boundary conditions

Authors: E. Korotyaev and D. Chelkak
Translated by: the authors
Original publication: Algebra i Analiz, tom 21 (2009), nomer 5.
Journal: St. Petersburg Math. J. 21 (2010), 761-778
MSC (2010): Primary 34B24
Published electronically: July 15, 2010
MathSciNet review: 2604565
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H\psi=-\psi''+q\psi$, $ \psi(0)=0$, $ \psi'(1)+b\psi(1)=0$ be a selfadjoint Sturm-Liouville operator acting in $ L^2(0,1)$. Let $ \lambda_n(q,b)$ and $ \nu_n(q,b)$ denote its eigenvalues and the so-called norming constants, respectively. A complete characterization of all spectral data $ (\{\lambda_n\}_{n=0}^{+\infty};\{\nu_n\}_{n=0}^{+\infty})$ corresponding to $ (q;b)\in L^2(0,1)\times\mathbb{R}$ is given, together with a similar characterization for fixed $ b$ and a parametrization of isospectral manifolds.

References [Enhancements On Off] (What's this?)

  • [Am29] V. A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53 (1929), 690-695.
  • [Bo46] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1-96. MR 0015185 (7:382d)
  • [CK07] D. Chelkak and E. Korotyaev, The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition, Ann. Henri Poincaré 8 (2007), 1115-1150. MR 2355343 (2008m:34012)
  • [CKK04] D. Chelkak, P. Kargaev, and E. Korotyaev, Inverse problem for harmonic oscillator perturbed by potential, characterization, Comm. Math. Phys. 249 (2004), 133-196. MR 2077254 (2005h:81120)
  • [DT84] B. Dahlberg and E. Trubowitz, The inverse Sturm-Liouville problem. III, Comm. Pure Appl. Math. 37 (1984), 255-267. MR 0733718 (86f:34052)
  • [GL51] I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951), no. 4, 309-360. (Russian) MR 0045281 (13:558f)
  • [IT83] E. Isaacson and E. Trubowitz, The inverse Sturm-Liouville problem. I, Comm. Pure Appl. Math. 36 (1983), 767-783. MR 0720593 (85d:34024)
  • [IMT84] E. Isaacson, H. P. McKean, and E. Trubowitz, The inverse Sturm-Liouville problem. II, Comm. Pure Appl. Math. 37 (1984), 1-11. MR 0728263 (86f:34051)
  • [JL97] M. Jodeit and B. M. Levitan, The isospectrality problem for the classical Sturm-Liouville equation, Adv. Differential Equations 2 (1997), 297-318. MR 1424771 (97i:34036)
  • [Lev84] B. M. Levitan, Inverse Sturm-Liouville problems, Nauka, Moscow, 1984; English transl., VSP, Zeist, 1987. MR 0771843 (86d:34002); MR 0933088 (89b:34001)
  • [Mar77] V. A. Marchenko, Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977; English transl., Oper. Theory Adv. Appl., vol. 22, Birkhäuser Verlag, Basel, 1986. MR 0481179 (58:1317); MR 0897106 (88f:34034)
  • [PT87] J. Pöschel and E. Trubowitz, Inverse spectral theory, Pure Appl. Math., vol. 130, Acad. Press, Inc., Boston, MA, 1987. MR 0894477 (89b:34061)
  • [CK09] D. Chelkak and E. Korotyaev, Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval, J. Funct. Anal. 257 (2009), 1546-1588. MR 2541280

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34B24

Retrieve articles in all journals with MSC (2010): 34B24

Additional Information

E. Korotyaev
Affiliation: School of Mathematics, Cardiff University, Senghennydd Road, CF24 4AG Cardiff, Wales, United Kingdom

D. Chelkak
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii Prospekt 28, Staryi Petergof, St. Petersburg 198504, Russia

Keywords: Inverse spectral theory, Sturm–Liouville operators
Received by editor(s): March 15, 2008
Published electronically: July 15, 2010
Additional Notes: The first author was partially supported by EPSRC, grant EP/D054621
The second author was partially supported by the Foundation of the President of the Russian Federation (grants no. MK-4306.2008.1 and NSh-2409.2008.1)
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society