Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On automorphisms of strongly regular graphs with $ \lambda=0$ and $ \mu=3$


Authors: A. A. Makhnev and V. V. Nosov
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 21 (2009), nomer 5.
Journal: St. Petersburg Math. J. 21 (2010), 779-790
MSC (2010): Primary 05C60, 05C69
DOI: https://doi.org/10.1090/S1061-0022-2010-01117-8
Published electronically: July 15, 2010
MathSciNet review: 2604566
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A strongly regular graph with $ \lambda=0$ and $ \mu=3$ is of degree 3 or 21. The automorphisms of prime order and the subgraphs of their fixed points are described for a strongly regular graph $ \Gamma$ with parameters $ (162,21,0,3)$. In particular, the inequality $ \vert G/O(G)\vert\le 2$ holds true for $ G=\operatorname{Aut}(\Gamma)$.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Makhnev and D. V. Paduchikh, On automorphisms of the Aschbacher graph, Algebra Logika 40 (2001), no. 2, 125-134; English transl., Algebra Logic 40 (2001), no. 2, 69-74. MR 1850442 (2002f:20002)
  • 2. A. A. Makhnev and V. V. Nosov, On automorphisms of strongly regular graphs with $ \lambda=0$, $ \mu=2$, Mat. Sb. 195 (2004), no. 3, 47-68; English transl., Sb. Math. 195 (2004), nos. 3-4, 347-367. MR 2068957 (2005c:05200)
  • 3. A. E. Brouwer and W. H. Haemers, The Gewirtz graph: an exercise in the theory of graph spectra, European J. Combin. 14 (1993), 397-407. MR 1241907 (94k:05219)
  • 4. A. E. Brouwer, A. Cohen, and A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), Bd. 18, Springer-Verlag, Berlin, 1989. MR 1002568 (90e:05001)
  • 5. P. Cameron, Permutation groups, London Math. Soc. Stud. Texts, vol. 45, Cambridge Univ. Press, Cambridge, 1999. MR 1721031 (2001c:20008)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 05C60, 05C69

Retrieve articles in all journals with MSC (2010): 05C60, 05C69


Additional Information

A. A. Makhnev
Affiliation: Institute of Mathematics and Mechanics, Urals Branch, Russian Academy of Sciences, Ekaterinburg, Russia
Email: puncker1978@mail.ru

V. V. Nosov
Affiliation: Institute of Mathematics and Mechanics, Urals Branch, Russian Academy of Sciences, Ekaterinburg, Russia

DOI: https://doi.org/10.1090/S1061-0022-2010-01117-8
Keywords: Edge-regular graph, completely regular graph, strongly regular graph, paw, clique
Received by editor(s): December 9, 2008
Published electronically: July 15, 2010
Additional Notes: Supported by RFBR (grants nos. 08-01-00009 and 08-01-90006).
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society