FAMILIES OF FRACTIONAL CAUCHY TRANSFORMS
IN THE BALL

E. S. DUBTSOV

Dedicated to Victor Petrovich Havin on the occasion of his 75th birthday

ABSTRACT. Let B_n denote the unit ball in \mathbb{C}^n, $n \geq 1$. Given $\alpha > 0$, let $K_\alpha(n)$ denote the class of functions defined for $z \in B_n$ by integrating the kernel $(1 - \langle z, \zeta \rangle)^{-\alpha}$ against a complex-valued Borel measure on the sphere $\{\zeta \in \mathbb{C}^n : |\zeta| = 1\}$. The families $K_\alpha(1)$ of fractional Cauchy transforms have been investigated intensively by several authors. In the paper, various properties of $K_\alpha(n)$, $n \geq 2$, are studied. In particular, relations between $K_\alpha(n)$ and other spaces of holomorphic functions in the ball are obtained. Also, pointwise multipliers for the spaces $K_\alpha(n)$ are investigated.

§1. INTRODUCTION

For $n \geq 1$, put $B_n = \{z \in \mathbb{C}^n : |z| < 1\}$. Let $M(n)$ denote the space of complex-valued Borel measures on the sphere ∂B_n.

1.1. Fractional Cauchy transforms. Let $\alpha > 0$. Given a measure $\mu \in M(n)$, its fractional Cauchy transform of order α is defined by the identity

$$K_\alpha[\mu](z) = \frac{1}{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^{\alpha}} d\mu(\zeta), \quad z \in B_n.$$

Here and in what follows we use the principal branch of the logarithm. Put $K_\alpha(n) = \{K_\alpha[\mu] : \mu \in M(n)\}$.

1.2. Multipliers. Let $\mathcal{Hol}(B_n)$ denote the space of holomorphic functions in the ball B_n. A function $g \in \mathcal{Hol}(B_n)$ is called a multiplier for the family $K_\alpha(n)$, $\alpha > 0$, if $fg \in K_\alpha(n)$ for all $f \in K_\alpha(n)$. Let $\mathcal{M}_\alpha(n)$ denote the set of all multipliers for $K_\alpha(n)$.

1.3. Families $K_\alpha(n)$ and $\mathcal{M}_\alpha(n)$ as Banach spaces. For $f \in K_\alpha(n)$, put

$$\|f\|_{K_\alpha(n)} = \inf \{\|\mu\|_{M(n)} : f = K_\alpha[\mu]\}.$$

Standard arguments show that the above infimum is attained, and that $K_\alpha(n)$ with the norm $\|\cdot\|_{K_\alpha(n)}$ is a Banach space. Next, assume that $f = K_\alpha[\rho]$, where ρ is a positive measure. For $\mu \in M(n)$, let $f = K_\alpha[\mu]$; then $\|\rho\| = K_\alpha[\rho](0) = K_\alpha[\mu](0) \leq \|\mu\|$. Therefore, $\|f\|_{K_\alpha(n)} = \|\rho\|_{M(n)}$.

For $g \in \mathcal{M}_\alpha(n)$, put

$$\|g\|_{\mathcal{M}_\alpha(n)} = \sup \{\|fg\|_{K_\alpha(n)} : \|f\|_{K_\alpha(n)} \leq 1\}.$$

The closed graph theorem guarantees that $\|g\|_{\mathcal{M}_\alpha(n)} < \infty$. The space $\mathcal{M}_\alpha(n)$ with the norm $\|\cdot\|_{\mathcal{M}_\alpha(n)}$ is a Banach space. Also, note that $\mathcal{M}_\alpha(n)$ is a Banach algebra.

2010 Mathematics Subject Classification. Primary 32A26, 32A37.
Key words and phrases. Fractional Cauchy transform, Bergman–Sobolev space, pointwise multiplier.
Supported by RFBR (grant no. 08-01-00358-a) and by the Russian Science Support Foundation.
1.4. Historical remarks. The families $K_\alpha(n)$ generalize the classical family $K_\alpha(n)$ of Cauchy integrals. Investigations of the family $K_1(1)$ as a Banach space were initiated by Havin in [14, 15]. Further results and references are presented in the monograph [9]. The spaces $K_\alpha(1)$, $\alpha > 0$, were introduced by MacGregor [20]. Various properties of the families $K_\alpha(1)$ are collected in [17]. In the present paper we focus on the study of the families $K_\alpha(n)$ with $n \geq 2$. Certain properties of the spaces $K_n(n)$, $n \in \mathbb{N}$, were proved in the survey [3]. To the best knowledge of the author, for $n \geq 2$ the families $K_\alpha(n)$ have not been investigated systematically.

1.5. Related problems. Let σ_n denote the normalized Lebesgue measure on the sphere ∂B_n. For $1 \leq p \leq \infty$ and $0 < \alpha < n$, put

$$K_\alpha^p(n) = \{ K_\alpha[f \sigma_n] : f \in L^p(\sigma_n) \}.$$

The boundary behavior of functions belonging to $K_\alpha^p(1)$ was investigated in [21], where the families $K_\alpha^p(1)$ were called Dirichlet type spaces. The families $K_\alpha^p(n)$, $n \in \mathbb{N}$, were investigated in [20]; see also [1, 19, 8].

1.6. Organization of the paper. Embedding properties for $K_\alpha(n)$ and $\mathfrak{M}_\alpha(n)$ are studied in [22]. Relations between $K_\alpha(n)$ and the classical spaces of holomorphic functions are obtained in §3 and §5. Also, in §4 and §5 we study differentiation operators on the spaces $K_\alpha(n)$. The boundary behavior of the fractional Cauchy transforms is investigated in §6. Finally, some results about the multiplier spaces $\mathfrak{M}_\alpha(n)$ are obtained in §7.

§2. Embedding properties

2.1. Embedding properties for families of fractional Cauchy transforms. Below we shall use the following lemma.

Lemma 2.1 (see [7] Lemma 1). Assume that $u, v \in B_1$, $\alpha > 0$, $\beta > 0$. Then

$$(1 - u)^{-\alpha}(1 - v)^{-\beta} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 t^{\alpha - 1}(1 - t)^{\beta - 1}[(1 - (tu + (1 - t)v)]^{-\alpha - \beta} dt.$$

Let $\mathcal{P}(n)$ denote the set of all probability measures on the sphere ∂B_n, $n \in \mathbb{N}$. For $n = 1$, the following result was obtained in [7].

Proposition 2.2. Put $\mathcal{F}_\alpha(n) = \{ K_\alpha[\mu] : \mu \in \mathcal{P}(n) \}$, $n \in \mathbb{N}$.

(i) If $\alpha > 0$ and $\beta > 0$, then $\mathcal{F}_\alpha(n) \cdot \mathcal{F}_\beta(n) \subset \mathcal{F}_{\alpha + \beta}(n)$.

(ii) If $0 < \alpha < \beta$, then $\mathcal{F}_\alpha(n) \subset \mathcal{F}_\beta(n)$.

Proof. First, we show how to deduce statement (i) from the following property:

$$(1 - \langle z, \zeta \rangle)^{-\alpha}(1 - \langle z, \xi \rangle)^{-\beta} \in \mathcal{F}_{\alpha + \beta}(n), \quad z \in B_n,$$

for any fixed points $\zeta, \xi \in \partial B_n$. So, let $f \in \mathcal{F}_\alpha(n)$, and let $g \in \mathcal{F}_\beta(n)$. Then, by the definition,

$$f(z)g(z) = \int_{\partial B_n \times \partial B_n} (1 - \langle z, \zeta \rangle)^{-\alpha}(1 - \langle z, \xi \rangle)^{-\beta} d\rho(\zeta, \xi), \quad z \in B_n,$$

where ρ is a probability measure on the product $\partial B_n \times \partial B_n$. We approximate the measure ρ in the weak* topology by probability measures ρ_j, where every ρ_j is a finite sum of atomic charges. The set $\mathcal{F}_{\alpha + \beta}(n)$ is convex; therefore, on the one hand, we have

$$\int_{\partial B_n \times \partial B_n} (1 - \langle z, \zeta \rangle)^{-\alpha}(1 - \langle z, \xi \rangle)^{-\beta} d\rho_j(\zeta, \xi) \in \mathcal{F}_{\alpha + \beta}(n).$$

On the other hand, without loss of generality we may assume that the convergence
\[
\int_{\partial B_n} (1 - \langle z, \zeta \rangle)^{-\alpha} (1 - \langle z, \zeta \rangle)^{-\beta} \, dp_j(\zeta, \xi) \to f(z)g(z)
\]
as \(j \to \infty\) is uniform on the compact subsets of the ball \(B_n\). It remains to observe that the set \(F_{\alpha+\beta}(n)\) is closed in the topology of uniform convergence on compact subsets of the ball.

Now, we prove property (2.1). Lemma 2.4 guarantees that
\[
(1 - \langle z, \zeta \rangle)^{-\alpha} (1 - \langle z, \zeta \rangle)^{-\beta} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_0^1 t^{\alpha-1}(1-t)^{\beta-1}[1 - \langle z, w(t) \rangle]^{-\alpha-\beta} \, dt,
\]
where \(z \in B_n\) and \(w(t) = t\zeta + (1-t)\xi\). Since
\[
\Gamma(\alpha + \beta) \Gamma(\alpha)^{-1} \Gamma(\beta)^{-1} t^{\alpha-1}(1-t)^{\beta-1} \, dt
\]
is a probability measure on the interval \([0, 1]\), it suffices to show that
\[
(1 - \langle z, w(t) \rangle)^{-\alpha-\beta} \in F_{\alpha+\beta}(n), \quad z \in B_n,
\]
for every fixed parameter \(t \in [0, 1]\). If \(t = 0\) or \(t = 1\), then property (2.3) holds true by definition. So, assume that \(0 < t < 1\). Then \(w(t) \in B_n\). Next, note that \([1 - \langle z, \cdot \rangle]^{-\alpha-\beta}\) is a harmonic function in the closed ball \(B_n\). Hence,
\[
\frac{1}{1 - \langle z, w \rangle} = \frac{1}{|1 - \langle z, \xi \rangle|^{\alpha+\beta}} = \int_{\partial B_n} \frac{1 - |w|}{|w - \eta|^{2n}} \frac{1}{|1 - \langle z, \eta \rangle|^{\alpha+\beta}} \, d\sigma_n(\eta).
\]
If a point \(w \in B_n\) is fixed, then \((1 - |w|^2)|w - \eta|^{-2n} \, d\sigma_n(\eta)\) is a probability measure. Thus, to prove (2.3), it suffices to put \(w = w(t), \ 0 < t < 1\). The proof of property (i) is finished.

Let \(\beta > \alpha > 0\). Recall that the ball algebra \(A(B_n)\) is defined by
\[
A(B_n) = \text{Hol}(B_n) \cap C(B_n).
\]
If \(z \in B_n\), then \((1 - \langle z, \cdot \rangle)^{-\beta+\alpha} \in \tilde{A}(B_n)\). Hence,
\[
1 - (1 - \langle z, \zeta \rangle)^{-\beta+\alpha} = \int_{\partial B_n} \frac{1}{|1 - \langle z, \xi \rangle|^\beta} \, d\sigma_n(\zeta), \quad z \in B_n.
\]
In other words, \(1 \in F_{\beta-\alpha}(n)\); thus, (i) implies (ii).

\[\square\]

Corollary 2.3. Let \(n \in \mathbb{N}\).

(i) If \(\alpha > 0\) and \(\beta > 0\), then \(K_\alpha(n) \cdot K_\beta(n) \subset K_{\alpha+\beta}(n)\).

(ii) If \(0 < \alpha < \beta\), then \(K_\alpha(n) \subset K_\beta(n)\).

Proof. Let \(f = K_\alpha[\mu]\) and let \(g = K_\beta[\rho]\), where \(\mu, \rho \in M(n)\) and \(\alpha, \beta > 0\). Considering the Jordan decompositions of the measures \(\mu, \rho\) and applying part (i) of Proposition 2.2 we obtain properties (i) and (ii). \[\square\]

2.2. Embedding properties for the multiplier families. The proof of the following lemma will be omitted, because it practically coincides with that given in [29] for the case where \(n = \alpha = 1\) (see also [10], where the case of \(n = 1, \alpha > 0\) was considered).

Lemma 2.4. Assume that \(n \in \mathbb{N}\) and \(\alpha > 0\). Then the following properties are equivalent:

(i) \(g \in \mathfrak{M}_\alpha(n)\);

(ii) \(g(z)(1 - \langle z, \zeta \rangle)^{-\alpha} \in K_\alpha(n)\) for all \(\zeta \in \partial B_n\) and

\[
(2.5) \quad \sup \left\{ \left\| \frac{g(z)}{(1 - \langle z, \zeta \rangle)^\alpha} \right\|_{K_\alpha(n)} : \zeta \in \partial B_n \right\} < \infty.
\]
For $n = 1$, the following proposition was proved in [10].

Proposition 2.5. If $n \in \mathbb{N}$ and $0 < \alpha < \beta$, then $M_\alpha(n) \subset M_\beta(n)$.

Proof. Let $g \in M_\alpha(n)$. By Lemma 2.4, there exists a constant $C > 0$ and there exist measures $\mu_\zeta \in M(n)$, $\zeta \in \partial B_n$, such that $\|\mu_\zeta\| \leq C$ and

$$
g(z) = \frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} = \int_{\partial B_n} \frac{1}{(1 - \langle z, \xi \rangle)^\alpha} d\mu_\zeta(\xi), \quad z \in B_n.
$$

Hence,

$$
g(z) = \frac{1}{(1 - \langle z, \zeta \rangle)^\beta} = \int_{\partial B_n} \frac{1}{(1 - \langle z, \xi \rangle)^\beta} d\mu_\zeta(\xi).
$$

By (2.2) and (2.4), for every pair of points $\zeta, \xi \in \partial B_n$, there exists a probability measure $\rho_{\zeta, \xi} \in M(n)$ such that

$$
\frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} = \int_{\partial B_n} \frac{1}{(1 - \langle z, \eta \rangle)^\beta} d\rho_{\zeta, \xi}(\eta).
$$

Therefore,

$$
g(z) = \frac{1}{(1 - \langle z, \zeta \rangle)^\beta} = \int_{\partial B_n} \int_{\partial B_n} \frac{1}{(1 - \langle z, \eta \rangle)^\beta} d\rho_{\zeta, \xi}(\eta) d\mu_\zeta(\xi).
$$

Fix a point $\zeta \in \partial B_n$. We approximate the measure $\mu = \mu_\zeta$ in the weak* topology by measures μ_k such that $\|\mu_k\| \leq C$ and $\mu_k = \sum_{j=1}^{J(k)} a_{j,k}\delta_{\xi_j,k}$, $a_{j,k} \in \mathbb{C}$. Let $\lambda = \lambda_\zeta$ denote an accumulation point of the sequence $\lambda_k = \sum_{j=1}^{J(k)} a_{j,k}\mu_\zeta(\xi_j,k)$ in the weak* topology. Then

$$
g(z) = \frac{1}{(1 - \langle z, \zeta \rangle)^\beta} = \int_{\partial B_n} \frac{1}{(1 - \langle z, \eta \rangle)^\beta} d\lambda_\zeta(\eta),
$$

where $\|\lambda_\zeta\| \leq C$. Thus, Lemma 2.4 guarantees that $g \in M_\beta(n)$. □

§3. **Fractional Cauchy Transforms and Hardy Spaces**

For $f \in \text{Hol}(B_n)$, $0 < p < +\infty$ and $0 < r < 1$, put

$$M_p(f, r) = \left(\int_{\partial B_n} |f(r\zeta)|^p \, d\sigma_n(\zeta) \right)^{\frac{1}{p}}.
$$

Therefore, the classical Hardy space $H^p(B_n)$ is defined by

$$H^p(B_n) = \{ f \in \text{Hol}(B_n) : M_p(f, r) \leq C \}.
$$

Recall that if f and p are fixed, then the integral mean $M_p(f, r)$ is a monotone increasing function of the variable $r \in (0, 1)$.

For $n \in \mathbb{N}$, let $\mathcal{K}_0(n)$ denote the family of all functions f such that

$$f(z) - f(0) = \int_{\partial B_n} \log \frac{1}{1 - \langle z, \zeta \rangle} \, d\mu(\zeta), \quad z \in B_n,
$$

for a measure $\mu \in M(n)$.

Let $f \in \mathcal{K}_0(n)$, $\alpha \geq 0$. In the present section we study the growth of the integral means $M_p(f, r)$ as $r \to 1-$. For $n = 1$, the corresponding results were obtained in [11].

The following lemma will be used below in numerous situations. The notation $a(z) \approx b(z)$ means that the quotient $a(z)/b(z)$ has a finite positive limit as $|z| \to 1-$.

Lemma 3.1 (see [23] Proposition 1.4.10]). *Suppose $n \in \mathbb{N}$ and $c \in \mathbb{R}$. Put

$$I_c(z) = \int_{\partial B_n} \frac{d\sigma_n(\zeta)}{|1 - \langle z, \zeta \rangle|^{n+c}}, \quad z \in \overline{B_n}.
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(i) If \(c < 0 \), then the function \(I_c(z) \) is bounded in the closed ball \(\bar{B}_n \).
(ii) If \(c > 0 \), then \(I_c(z) \approx (1 - |z|^2)^{-c} \).
(iii) Finally,
\[
I_0(z) \approx \log \frac{1}{(1 - |z|^2)}.
\]

Proposition 3.2. For \(\alpha \geq 0 \), let \(f \in \mathcal{K}_\alpha(n) \). The following estimates hold true as \(r \to 1^- \).

If \(\alpha = 0 \) and \(0 < p < +\infty \), then
\[
M_p^r(f, r) = O(1).
\]
If \(0 < \alpha \leq n \) and \(0 < p < n/\alpha \), then
\[
M_p^r(f, r) = O(1).
\]
If \(0 < \alpha \leq n \) and \(p = n/\alpha \), then
\[
M_p^r(f, r) = O\left(\log \frac{1}{1 - r} \right).
\]
If \(p > n/\alpha \) and \(p \geq 1 \), then
\[
M_p^r(f, r) = O\left(\frac{1}{(1 - r)^{\alpha p - n}} \right).
\]
If \(0 < p < 1 \) and \(\alpha \geq 2n \), then
\[
M_p^r(f, r) = O\left(\frac{1}{(1 - r)^{\alpha n p}} \right).
\]

Proof. It is well known that \(\mathcal{K}_\alpha(n) \subset H^p(B_n) \) for all \(0 < p < 1 \) \cite[Theorem 6.2.3]{23}. In other words, estimate (3.3) is fulfilled for \(\alpha = n \). Next, let \(f = K_{\alpha} \).

Assume that \(p \geq 1 \). Then the integral Minkowski inequality, Fubini’s theorem, and Lemma 5.1 guarantee that
\[
M_p^r(f, r) = \int_{\partial B_n} |f(r\xi)|^p \, d\sigma_n(\xi) \leq \int_{\partial B_n} \int_{\partial B_n} \frac{1}{|1 - \langle r\xi, \zeta \rangle|^\alpha} \, d\sigma_n(\xi) \, d\mu(\zeta)
\]
\[
= \begin{cases}
O(1) & \text{if } \alpha p < n, \\
O\left(\log \frac{1}{1 - r} \right) & \text{if } \alpha p = n, \\
O\left(\frac{1}{(1 - r)^{\alpha p - n}} \right) & \text{if } \alpha p > n.
\end{cases}
\]

This proves estimates (3.4) and (3.5). Property (3.3) is proved for \(p \geq 1 \). Recall that \(H^q(B_n) \subset H^t(B_n) \) for \(q > t > 0 \). Hence, estimate (3.3) is valid for all \(0 < p < n/\alpha \).

If \(\gamma > 0 \), then
\[
-\log 2 \leq \log \frac{1}{|1 - \langle r\xi, \zeta \rangle|} \leq C(\gamma) \frac{1}{|1 - \langle r\xi, \zeta \rangle|^\gamma},
\]
where \(0 < r < 1 \) and \(\xi, \zeta \in \partial B_n \). Hence, estimate (3.2) is proved for all \(p \in (0, +\infty) \).

Now, assume that \(0 < p < 1 \) and \(\alpha \geq 2n \). Note that \((a + b)^p \leq C(p)(a^p + b^p) \) for \(a \geq 0, b \geq 0 \). Hence, by the Jordan decomposition theorem, we may assume that \(\mu \) is a probability measure. Therefore, we obtain
\[
|f(z)| \leq \int_{\partial B_n} \frac{1}{|1 - \langle z, \zeta \rangle|^\alpha} \, d\mu(\zeta)
\]
\[
\leq \frac{1}{(1 - |z|)^{\alpha - 2n}} \int_{\partial B_n} \frac{1}{|1 - \langle z, \zeta \rangle|^{2n}} \, d\mu(\zeta)
\]
\[
= \frac{1}{(1 - |z|)^{\alpha - n}} \int_{\partial B_n} \frac{(1 - |z|^2)^n}{|1 - \langle z, \zeta \rangle|^{2n}} \, d\mu(\zeta).
\]
Note that
\[u(z) = \int_{\partial B_n} \frac{(1-|z|^2)^n}{|1-\langle z, \zeta\rangle|^{2n}} \, d\mu(\zeta) \]
is a positive M-harmonic function in the ball. Thus,
\[\int_{\partial B_n} u(r\zeta) \, d\sigma_n(\zeta) = u(0) \]
for $0 < r < 1$; see [23, Theorem 4.2.4]. Next, since $1/p > 1$, Minkowski’s inequality yields
\[(\int_{\partial B_n} u^p(r\zeta) \, d\sigma_n(\zeta))^{\frac{1}{p}} \leq \int_{\partial B_n} u^{\frac{p}{n}}(r\zeta) \, d\sigma_n(\zeta) = u(0) \]
for $0 < r < 1$.

Estimates (3.7) and (3.8) imply that
\[M^p_p(f,r) = \int_{\partial B_n} |f(r\zeta)|^p \, d\sigma_n(\zeta) \leq \frac{1}{(1-r)(\alpha-n)p} u^p(0) = \frac{(\mu(\partial B_n))^p}{(1-r)(\alpha-n)p}. \]

This proves (3.6).

\[\text{Corollary 3.3.} \quad \text{Let } n \in \mathbb{N}. \]

(i) If $0 \leq \alpha \leq n$, then $K_\alpha(n) \subset H^p(B_n)$ for $0 < p < n/\alpha$.

(ii) If $f \in H^1(B_n)$, then $f \in K_n(n)$; moreover, $\|f\|_{K_n(n)} \leq \|f\|_{H^1(B_n)}$.

(iii) $K_0(n) \subset K_n(n)$.

\[\text{Proof.} \quad \text{Part (i) is equivalent to estimates (3.2) and (3.3). Next, if } f \in H^1(B_n), \text{ then } f \in K_n(n); \text{ moreover, } \|f\|_{K_n(n)} \leq \|f\|_{H^1(B_n)}. \]

Finally, part (iii) follows from (i) and (ii). \[\square \]

Part (iii) of Corollary 3.3 will be improved in Corollary 5.5. Also, estimate (3.3) can be refined in terms of the weak Hardy spaces $H^{p,\infty}(B_n)$. Let $p > 0$. By definition, $f \in H^{p,\infty}(B_n)$ if $f \in H^p(B_n)$ for some $q > 0$ and
\[\|f\|_{p,\infty} = \sup_{t>0} \int_{\partial B_n} |f^*(\zeta)|^t \, d\sigma_n(\zeta) \]
for all $f \in H^{p,\infty}(B_n)$, for some positive constants $C_1(p)$ and $C_2(p)$ (see, e.g., [10]).

\[\text{Proposition 3.4.} \quad \text{If } 0 < \alpha \leq n, \text{ then } K_\alpha(n) \subset H^{\frac{n}{\alpha}}(B_n). \]

\[\text{Proof.} \quad \text{The argument below is due to A. B. Aleksandrov. The case of } \alpha = n \text{ is well known. So, assume that } p = n/\alpha > 1; \text{ there exists a norm } \|\cdot\|_p \text{ on the space } H^{p,\infty}(B_n) \text{ such that} \]
\[\|f\|_{p,\infty} \leq C_1(p) \|f\|_p \leq C_2(p) \|f\|_{p,\infty} \]
for all $f \in H^{p,\infty}(B_n)$, for some positive constants $C_1(p)$ and $C_2(p)$ (see, e.g., [10]).

Now, assume that $f \in K_\alpha(n)$. We must prove that $f \in H^{p,\infty}(B_n)$. Suppose, without loss of generality, that μ is a probability measure. We approximate the measure μ in the weak* topology by probability measures $\mu_k = \sum_{j=1}^{J(k)} a_{k,j} \delta_{\xi_{k,j}}$, where $a_{k,j} > 0$ and $\delta_{\xi_{k,j}}$ denotes the δ-measure at the point $\xi_{k,j} \in \partial B_n$. Applying estimates (3.3), the triangle inequality, and Proposition 5.1.4 in [23], we obtain
\[\|K_\alpha \mu_k\|_{p,\infty} \leq C_1(p) \|K_\alpha \mu_k\|_p \leq C_1(p) \|1-z_1\|^{-\alpha} \|f\|_p \]
\[\leq C_2(p) \|1-z_1\|^{-\alpha} \|f\|_{p,\infty} \leq C(p,n). \]

Finally, since $\mu_k \to \mu$ in the weak* topology, we see that $f \in H^{p,\infty}(B_n)$. The proof is finished. \[\square \]
§4. Families $K_\alpha(n)$ and Differentiation

Let $f \in \mathcal{H}o\ell(B_1)$, and let $\alpha \geq 0$. It is well known that $f \in K_\alpha(1)$ if and only if $f' \in K_{\alpha+1}(1)$. In the present section, we prove similar assertions for $f \in \mathcal{H}o\ell(B_n)$, $n \in \mathbb{N}$.

4.1. Radial derivatives. Let $f \in \mathcal{H}o\ell(B_n)$. The radial derivative Rf is defined by the identity

$$ Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z). $$

Recall that

(4.1) $f(z) - f(0) = \int_{0}^{1} \frac{Rf(tz)}{t} dt, \quad z \in B_n.$

Proposition 4.1. Let $f \in \mathcal{H}o\ell(B_n)$, $n \in \mathbb{N}$. Then $f \in K_\alpha(n)$ if and only if $Rf \in K_{\alpha+1}(n)$.

Proof. Suppose that $f \in K_\alpha(n)$, that is, (4.1) is true. Then

$$ Rf(z) = \int_{\partial B_n} \frac{\langle z, \zeta \rangle}{\langle z, \zeta \rangle} d\mu(\zeta) = K_1[\rho](z), $$

where $\rho = \mu - \mu(\partial B_n)\sigma_1$.

To prove the reverse implication, assume that

$$ Rf(z) = \int_{\partial B_n} \frac{1}{1 - \langle z, \zeta \rangle} d\rho(\zeta), $$

where $\rho \in M(n)$. Note that $Rf(0) = 0$; thus, $\rho(\partial B_n) = 0$. Applying identity (4.1) and the property $\rho(\partial B_n) = 0$, we obtain

$$ f(z) - f(0) = \int_{0}^{1} \int_{\partial B_n} \frac{1}{t(1 - t\langle z, \zeta \rangle)} dt \frac{1}{1 - t\langle z, \zeta \rangle} d\rho(\zeta) dt $$
$$ = \int_{0}^{1} \int_{\partial B_n} \frac{1}{t} \frac{\langle z, \zeta \rangle}{1 - t\langle z, \zeta \rangle} d\rho(\zeta) dt $$
$$ = \int_{\partial B_n} \int_{0}^{1} \frac{\langle z, \zeta \rangle}{1 - t\langle z, \zeta \rangle} dt d\rho(\zeta) $$
$$ = \int_{\partial B_n} \log \frac{1}{1 - \langle z, \zeta \rangle} d\rho(\zeta), $$

as required. \square

Proposition 4.2. Assume that $\alpha > 0$ and $f \in \mathcal{H}o\ell(B_n)$, $n \in \mathbb{N}$. Then $f \in K_\alpha(n) + K_\alpha(n)$ if and only if $Rf \in K_{\alpha+1}(n)$.

Proof. Let $g \in K_\alpha(n)$ and $h \in K_\alpha(n)$, that is,

$$ h(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} d\mu(\zeta), \quad z \in B_n. $$

Straightforward calculations show that

$$ Rh(z) = \int_{\partial B_n} \frac{\alpha}{(1 - \langle z, \zeta \rangle)^{\alpha+1}} d\mu(\zeta) - \alpha h(z) \in K_{\alpha+1}(n) $$

because $\alpha h \in K_\alpha(n) \subset K_{\alpha+1}(n)$ by part (ii) of Corollary 2.3. On the other hand, Proposition 4.1 guarantees that $Rg \in K_1(n) \subset K_{\alpha+1}(n)$.

It is convenient to split the proof of the reverse implication into two steps.
Step 1. Let $\alpha = m \in \mathbb{N}$. By the hypothesis, we have
\[\mathcal{R}f(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^{m+1}} d\mu(\zeta), \quad z \in B_n. \]
Hence,
\[f(z) - f(0) = \int_0^1 \frac{\mathcal{R}f(tz)}{t} dt = \int_0^1 \int_{\partial B_n} \frac{1}{t(1 - t\langle z, \zeta \rangle)^{m+1}} d\mu(\zeta) dt, \quad z \in B_n. \]
If $w \in \mathbb{C}$ and $|w| < 1$, then
\[\frac{1}{t(1 - tw)^{m+1}} = \frac{1}{t} + \sum_{j=1}^{m+1} \frac{w}{(1 - tw)^j}. \]
Since $\mathcal{R}f(0) = 0$, we have $\mu(\partial B_n) = 0$. Putting $w = \langle z, \zeta \rangle$, we obtain
\[f(z) - f(0) = \sum_{j=1}^{m+1} \int_{\partial B_n} \int_0^1 \frac{\langle z, \zeta \rangle}{(1 - t\langle z, \zeta \rangle)^j} dt d\mu(\zeta) \]
\[= - \int_{\partial B_n} \log(1 - \langle z, \zeta \rangle) d\mu(\zeta) + \sum_{j=2}^{m+1} \int_{\partial B_n} \frac{1}{(j-1)(1 - \langle z, \zeta \rangle)^{j-1}} d\mu(\zeta). \]
The embeddings $K_{j-1}(n) \subset K_m(n)$, $j = 2, \ldots, m$, guarantee that $f \in K_0(n) + K_m(n)$.

Step 2. Let $\alpha > 0$, $\alpha \notin \mathbb{N}$. Repeating the arguments of Step 1 and reversing the order of integration, we have
\[f(z) - f(0) = \int_0^1 \int_{\partial B_n} \frac{1}{t(1 - t\langle z, \zeta \rangle)^{\alpha+1}} d\mu(\zeta) dt \]
\[= \int_{\partial B_n} \int_0^1 \frac{\langle z, \zeta \rangle}{(1 - t\langle z, \zeta \rangle)^\alpha} dt d\mu(\zeta) + \int_0^1 \int_{\partial B_n} \frac{1}{t(1 - t\langle z, \zeta \rangle)^\alpha} d\mu(\zeta) dt. \]
The inner integral in the first summand can be calculated explicitly. So, consider the second summand. Put $[\alpha] = m \in \mathbb{N} \cup \{0\}$. Note that $m+1 > \alpha$ and $\mu(\partial B_n) = 0$. Hence, by part (ii) of Corollary 5.6, there exists a measure $\rho \in M(n)$ such that $K_{m+1}[\rho] = K_m[\mu]$. Also, we have $\rho(\partial B_n) = K_{m+1}[\rho](0) = K_m[\mu](0) = \mu(\partial B_n) = 0$. Therefore, reversing the order of integration once again, we obtain
\[f(z) - f(0) = \frac{1}{\alpha} \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} d\mu(\zeta) + \int_{\partial B_n} \int_0^1 \frac{1}{t(1 - t\langle z, \zeta \rangle)^{m+1}} dt d\rho(\zeta). \]
By the definition, the first summand in the above sum belongs to $K_{\alpha}(n)$. If $m = 0$, then the proof of Proposition 5.1 shows that the second summand is in the family $K_0(n)$. Finally, for $m \in \mathbb{N}$, at Step 1 it was proved that the second summand belongs to $K_0(n) + K_m(n) \subset K_0(n) + K_{\alpha}(n)$. □

Note that Proposition 5.2 admits refinement (see Corollary 5.6).

4.2. Fractional differential operators of order 1. By definition, we put $R^1 f = f + \mathcal{R}f$ for $f \in \mathcal{H}ol(B_n)$. The operator R^1 is called the fractional differential operator of order 1. Observe that
\[f(z) = \int_0^1 R^1 f(tz) dt, \quad z \in B_n. \]
The following proposition can be proved with the help of elementary methods.
Proposition 4.3. Let $f \in \mathcal{H}oI(B_n)$, $n \in \mathbb{N}$.

(i) If $\alpha > 0$, then the property $f \in K_\alpha(n)$ implies that $R^1 f \in K_{\alpha+1}(n)$.

(ii) If $\alpha \geq 1$, then the property $R^1 f \in K_{\alpha+1}(n)$ implies that $f \in K_{\alpha}(n)$.

Proof. Let $f \in K_\alpha(n)$, that is, $f = K_\alpha[\mu]$. Then

$$f + \mathcal{R}f = \alpha K_{\alpha+1}[\mu] + (1 - \alpha) f \in K_{\alpha+1}(n)$$

because $(1 - \alpha) f \in K_\alpha(n) \subset K_{\alpha+1}(n)$. The proof of part (i) is complete.

We split the proof of part (ii) into two steps.

Step 1. $\alpha = m \in \mathbb{N}$. By assumption, we have

$$R^1 f(tz) = \int_{\partial B_n} \frac{1}{(1 - t(z, \zeta))^{m+1}} d\mu(\zeta), \quad z \in B_n, \ t \in [0, 1].$$

Hence, using (4.2), we obtain

$$f(z) = \int_{\partial B_n} \int_0^1 \frac{1}{(1 - t(z, \zeta))^{m+1}} dt \ d\mu(\zeta), \quad z \in B_n.$$

Let $I(z, \zeta)$ denote the inner integral. If $\langle z, \zeta \rangle = 0$, then $I(z, \zeta) = 1$. If $\langle z, \zeta \rangle \neq 0$, then

$$I(z, \zeta) = \frac{1}{m} \frac{1 - (1 - \langle z, \zeta \rangle)^m}{\langle z, \zeta \rangle^{m+1}} = \frac{1}{m} \sum_{j=1}^{m} (1 - \langle z, \zeta \rangle)^{-j}.$$

Therefore, in both cases we have

$$I(z, \zeta) = \frac{1}{m} \sum_{j=1}^{m} (1 - \langle z, \zeta \rangle)^{-j}.$$

Consequently,

$$f(z) = \frac{1}{m} \sum_{j=1}^{m} \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^{m+1}} d\mu(\zeta).$$

Finally, we see that $f \in K_m(n)$, because $K_j(n) \subset K_m(n)$ for $j = 1, \ldots, m - 1$.

Step 2. $\alpha > 1$, $\alpha \notin \mathbb{N}$. Repeating the arguments of Step 1, we get

$$f(z) = \int_{\partial B_n} \int_0^1 \frac{1}{(1 - t(z, \zeta))^{\alpha+1}} dt \ d\mu(\zeta), \quad z \in B_n.$$

We represent the inner integral as a sum of two summands and integrate by parts in the second summand, obtaining

$$\int_0^1 \frac{1}{(1 - t(z, \zeta))^{\alpha+1}} dt = \int_0^1 \frac{1}{(1 - t(z, \zeta))^\alpha} dt + \int_0^1 \frac{t(z, \zeta)}{(1 - t(z, \zeta))^{\alpha+1}} dt$$

$$= \frac{1}{\alpha} \frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} + \frac{\alpha - 1}{\alpha} \int_0^1 \frac{1}{(1 - t(z, \zeta))^{\alpha}} dt.$$

Hence, Fubini’s theorem yields

$$f(z) = \frac{1}{\alpha} \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^\alpha} d\mu(\zeta) + \frac{\alpha - 1}{\alpha} \int_0^1 \int_{\partial B_n} \frac{1}{(1 - (t z, \zeta))^\alpha} d\mu(\zeta) dt.$$

By definition, the first summand in the above sum belongs to $K_\alpha(n)$.

Consider the second summand. Let \([\alpha] = m \in \mathbb{N}\). Note that \(m + 1 > \alpha\). Hence, by part (ii) of Corollary 2.3, there exists a measure \(\rho \in M(n)\) such that \(K_{m+1}[\rho] = K_\alpha[\mu]\). Therefore, the second summand has the following form:

\[
\frac{\alpha - 1}{\alpha} \int_0^1 \int_{\partial B_n} \frac{1}{(1 - (tz, \zeta))^{m+1}} \, d\rho(\zeta) \, dt.
\]

At Step 1 it was proved that the above function belongs to \(K_m(n) \subset K_\alpha(n)\). \(\square\)

To refine Proposition 4.3, we need the following lemma.

Lemma 4.4. Assume that \(\alpha > 0\) and \(g(w) = 1 - (1 - w)^\alpha\), \(w \in B_1\). Then there exists a measure \(\rho \in M(1)\) such that \((1 - w)^{-\alpha} g(w) / w = K_\alpha[\rho](w), w \in B_1\).

Proof. The definitions imply that \((g(w)/w)'w^2 = g'(w)w - g(w) \in H^1(B_1)\), where \(H^1(B_1)\) denotes the Hardy space. Note that \(h \in H^1(B_1)\) if \(h \in \mathcal{H}(B_n)\) and \(h(w)w^2 \in H^1(B_1)\). Putting \(h(w) = (g(w)/w)'\), we obtain \((g(w)/w)' \in H^1(B_1)\). Hence, \((g(w)/w) \in M_\alpha(1)\) by [16, Theorem 3.5]. Since \((1 - w)^{-\alpha} \in K_\alpha(1)\), the required measure \(\rho \in M(1)\) exists by the definition of the multiplier space \(M_\alpha(1)\). \(\square\)

Theorem 4.5. Assume that \(\alpha > 0\) and \(f \in \mathcal{H}(B_n), n \in \mathbb{N}\). Then \(f \in K_\alpha(n)\) if and only if \(R^1 f \in K_{\alpha+1}(n)\).

Proof. Suppose that \(R^1 f = K_{\alpha+1}[\mu]\), where \(\mu \in M(n)\). Applying formula (4.2) and reversing the order of integration, we obtain

\[
\alpha f(z) = \int_{\partial B_n} \int_0^1 \frac{\alpha \, dt}{(1 - t(z, \zeta))^{\alpha+1}} \, d\mu(\zeta)
= \int_{\partial B_n} \frac{1 - (1 - (z, \zeta))^{\alpha}}{(z, \zeta)\left(1 - (z, \zeta)\right)^{\alpha}} \, d\mu(\zeta), \quad z \in B_n,
\]

where the integrand is assumed to be equal to \(\alpha\) if \((z, \zeta) = 0\). We put \(w = (z, \zeta)\) and apply Lemma 4.4. Reversing the order of integration, we have

\[
\alpha f(z) = \int_{\partial B_1} \int_{\partial B_n} \frac{1 - (z, \lambda \zeta)}{(z, \lambda \zeta)^{-\alpha}} \, d\mu(\zeta) \, d\rho(\lambda)
= \int_{\partial B_1} K_\alpha[\mu_{\lambda}](z) \, d\rho(\lambda), \quad z \in B_n,
\]

where \(\mu_{\lambda}(E) = \mu(\lambda E)\) for the Borel sets \(E \subset \partial B_n\). Note that \(K_\alpha[\mu_{\lambda}](z)\) is a continuous function of the variable \(\lambda \in \partial B_1\). Below we show that the last integral is in the family \(K_\alpha(n)\). Without loss of generality, we may assume that \(\rho\) is a probability measure. We approximate the measure \(\rho\) in the weak* topology by the probability measures \(\rho_k = \sum_{j=1}^{\#k} a_k,j \delta_{\lambda_k,j}\), where \(\delta_{\lambda_k,j}\) denotes the \(\delta\)-measure at \(\lambda_k,j \in \partial B_1\). By the definition of weak* convergence, we have

\[
\sum_{j=1}^{\#k} a_k,j K_\alpha[\mu_{\lambda_k,j}](z) \xrightarrow{\rho_k} \int_{\partial B_1} K_\alpha[\mu_{\lambda}](z) \, d\rho(\lambda), \quad z \in B_n.
\]

Next, observe that the sequence \(\left\{\sum_{j=1}^{\#k} a_k,j \mu_{\lambda_k,j}\right\}\) is norm bounded. Hence, there exists a subsequence which converges in the weak* topology to a measure \(\nu \in M(n)\). Therefore,

\[
\sum_{j=1}^{\#k} a_k,j K_\alpha[\mu_{\lambda_k,j}](z) \xrightarrow{\rho_k} \int K_\alpha[\nu](z), \quad z \in B_n.
\]

Finally, we obtain \(f = K_\alpha[\nu/\alpha]\). Now, it suffices to refer to Proposition 4.3. \(\square\)
Note that Theorem 4.5 extends to the case of $\alpha = 0$ (see Corollary 5.7).

§5. Families $\mathcal{K}_\alpha(n)$ and Bergman–Sobolev spaces

5.1. Modified operators of fractional differentiation. Consider a pair of parameters $(\beta, t) \in \mathbb{R}^2$ with the property that neither $n - 1 - \beta$ nor $n - 1 - \beta + t$ is a strictly negative integer. We define an operator

$$R^{\beta, t} : \mathcal{H}ol(B_n) \rightarrow \mathcal{H}ol(B_n)$$

as follows. If

$$f(z) = \sum_{k=0}^{\infty} f_k(z)$$

is the homogeneous expansion of $f \in \mathcal{H}ol(B_n)$, then

$$R^{\beta, t} f(z) = \sum_{k=0}^{\infty} \frac{\Gamma(n-\beta)\Gamma(n+k-\beta+t)}{\Gamma(n-\beta+t)\Gamma(n+k-\beta)} f_k(z).$$

The inverse of $R^{\beta, t}$, denoted by $R_{\beta, t}$, is given by the formula

$$R_{\beta, t} f(z) = \sum_{k=0}^{\infty} \frac{\Gamma(n-\beta+t)\Gamma(n+k-\beta)}{\Gamma(n-\beta)\Gamma(n+k-\beta+t)} f_k(z).$$

Assume that $\beta < n$, $t > 0$, and identity (5.1) is true. Also, suppose that $r \in [0, 1]$ and $z \in B_n$. By the definition of the operator $R^{\beta, t}$, we have

$$\Gamma(n-\beta+t) \int_0^1 R^{\beta, t} f(rz)r^{\alpha-1}(1-r)^{t-1} dr = \sum_{k=0}^{\infty} f_k(z) = f(z).$$

Straightforward calculations imply the following lemma.

Lemma 5.1 (cf. [30] Proposition 1.14). Let $n \in \mathbb{N}$. Suppose that neither $n - 1 - \beta$ nor $n - 1 - \beta + t$ is a strictly negative integer. Then

$$R^{\beta, t} \left(\frac{1}{(1-(z,\zeta))^{n-\beta}} \right) = \frac{1}{(1-(z,\zeta))^{n-\beta+t}}$$

for all points $z \in B_n$ and $\zeta \in \partial B_n$.

5.2. A condition sufficient for membership in $\mathcal{K}_\alpha(n)$ with $\alpha > n$. For $n = 1$, the following fact was proved in [13].

Proposition 5.2. Suppose $n \in \mathbb{N}$ and $\alpha > n$. If $g \in \mathcal{H}ol(B_n)$ and

$$\int_0^1 \int_{\partial B_n} |g(r\zeta)|(1-r)^{\alpha-n-1} d\sigma_n(\zeta) dr = V < +\infty,$$

then $g \in \mathcal{K}_\alpha(n)$ and $\|g\|_{\mathcal{K}_\alpha(n)} \leq C(\alpha, n, V) = (\alpha - n) \cdots (\alpha - 1)V/(n-1)!$.

Proof. Put $t = \alpha - n$ and $f = R_{0, t} g$. Then $g = R_{0, t} f$ and

$$f(z) = \frac{\Gamma(n+t)}{\Gamma(n)\Gamma(t)} \int_0^1 g(rz)r^{\alpha-1}(1-r)^{t-1} dr$$
by \((\ref{5.3})\). If \(0 < s < 1\), then
\[
\frac{\Gamma(n)\Gamma(t)}{\Gamma(n+t)} \int_{\partial B_n} |f(s\zeta)| \, d\sigma_n(\zeta) \leq \int_0^1 \int_{\partial B_n} |g(r\zeta)| \, d\sigma_n(\zeta)(1-r)^{t-1} \, dr \\
\leq \int_0^1 \int_{\partial B_n} |g(r\zeta)| \, d\sigma_n(\zeta)(1-r)^{t-1} \, dr \\
= V < +\infty.
\]

Therefore, \(f \in H^1(B_n) \subset \mathcal{K}_n(n)\) and \(\|f\|_{\mathcal{K}_n(n)} \leq \|f\|_{H^1(B_n)} \leq C(\alpha, n, V)\). In other words,
\[
f(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^n} \, d\mu(\zeta), \quad z \in B_n,
\]
where \(\|\mu\|_{M(n)} \leq C(\alpha, n, V)\). Thus, with the help of Lemma \((\ref{5.1})\) we obtain
\[
g(z) = R^{\alpha+t}f(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^{n+t}} \, d\mu(\zeta), \quad z \in B_n.
\]
Hence, \(\|g\|_{\mathcal{K}_n(n)} \leq C(\alpha, n, V)\). \hfill \qedsymbol

5.3. Bergman–Sobolev spaces.

Suppose \(j \in \mathbb{N}\) and \(q > 0\). By definition, the Bergman–Sobolev space \(A^1_{\alpha,j}(B_n)\) consists of all functions \(f \in \mathcal{H}ol(B_n)\) for which
\[
\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)| (1-r)^q \, d\sigma_n(\zeta) \, dr < +\infty,
\]
where \(R^j = (R^1)^j\). For \(n = 1\), the following assertion coincides with \((\ref{13})\) Lemma 2.

Proposition 5.3. Suppose \(n \in \mathbb{N}\), \(j \in \{1, \ldots, n\}\), and \(\alpha > n - j\).

(i) If \(f \in A^1_{\alpha-n+j,j}(B_n)\), then \(f \in \mathcal{K}_n(n)\).

(ii) Let \(\beta > \alpha\). Then \(\mathcal{K}_n(n) \subset A^1_{\beta-n+j,j}(B_n)\).

Proof. We prove part (i). Since \(\alpha + j > n\), Proposition \((\ref{5.2})\) shows that \(R^j f \in \mathcal{K}_{\alpha+j}(n)\). Since \(\alpha > 0\), repeated application of Theorem \((\ref{4.5})\) guarantees that \(f \in \mathcal{K}_n(n)\).

Now, we turn to part (ii). Let \(f \in \mathcal{K}_n(n)\), \(\alpha > n - j\). By Theorem \((\ref{4.0})\) we have \(R^j f \in \mathcal{K}_{\alpha+j}(n)\); that is,
\[
R^j f(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \zeta \rangle)^{\alpha+j}} \, d\mu(\zeta), \quad z \in B_n,
\]
for some measure \(\mu \in M(n)\). Therefore, if \(0 \leq r < 1\), then
\[
\int_{\partial B_n} |R^j f(r\zeta)| \, d\sigma_n(\zeta) \leq \int_{\partial B_n} \int_{\partial B_n} \frac{1}{|1 - r \langle \zeta, \zeta' \rangle|^{\alpha+j}} \, d\sigma_n(\zeta) \, d|\mu|(\zeta).
\]

Since \(\alpha + j > n\), Lemma \((\ref{3.1})\) yields
\[
\int_{\partial B_n} |R^j f(r\zeta)| \, d\sigma_n(\zeta) \leq C|\mu|_{M(n)} (1-r)^{n-\alpha-j}.
\]

Now, assume that \(\beta > \alpha\). Then the above inequality guarantees that
\[
\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|(1-r)^{\beta-n+j-1} \, d\sigma_n(\zeta) \, dr \leq C|\mu| \int_0^1 (1-r)^{\beta-\alpha-1} < +\infty.
\]
In other words, \(f \in A^1_{\beta-n+j,j}(B_n)\). \hfill \qedsymbol
5.4. Bergman–Sobolev spaces and $K_0(n)$.

Lemma 5.4. Let $n \in \mathbb{N}$. Then $K_0(n) \subset A^1_{\alpha,n}(B_n)$ for any $\varepsilon > 0$.

Proof. Let $f \in K_0(n)$. Recall that $K_0(n) \subset K_n(n)$ by part (iii) of Corollary 5.3. Next, $R^j f \in K_j(n) \subset K_n(n)$ for $j = 1, 2, \ldots, n$ by Propositions 4.1, 4.2 and Corollary 5.3. Hence, $R^n f = (I + R)^n f \in K_n(n)$; that is,

$$R^n f(z) = \frac{1}{(1 - \langle z, \zeta \rangle)^n} d\mu(\zeta), \quad z \in B_n,$$

for some measure $\mu \in M(n)$. Hence, if $0 \leq r < 1$, then

$$\int_{\partial B_n} |R^n f(r\xi)| \, d\sigma_n(\xi) \leq \int_{\partial B_n} \int_{\partial B_n} \frac{1}{|1 - r(\xi, \zeta)|^n} d\sigma_n(\xi) \, d\mu(\zeta).$$

By Lemma 3.1 we have

$$\int_{\partial B_n} |R^n f(r\xi)| \, d\sigma_n(\xi) \leq C \log \frac{e}{1 - r}.$$

The above estimate implies that

$$\int_0^1 \int_{\partial B_n} |R^n f(r\xi)|(1 - r)^{\varepsilon - 1} \, d\sigma_n(\xi) \, dr \leq C \int_0^1 (1 - r)^{\varepsilon - 1} \log \frac{e}{1 - r} < +\infty,$$

as required. \hfill \Box

5.5. An embedding property for $K_0(n)$. It is well known that $K_0(1) \subset K_\alpha(1)$ for all $\alpha > 0$.

Corollary 5.5. Let $n \in \mathbb{N}$. Then $K_0(n) \subset K_\alpha(n)$ for all $\alpha > 0$.

Proof. Lemma 5.4 guarantees that $K_0(n) \subset A^1_{\alpha,n}(B_n), \alpha > 0$. It remains to note that $A^1_{\alpha,n}(B_n) \subset K_\alpha(n)$ by part (i) of Proposition 5.3. As B. Aleksandrov observed that Corollary 5.5 can also be deduced from the embedding $K_0(1) \subset K_\alpha(1)$ for all $\alpha > 0$.

5.6. The families $K_\alpha(n), \alpha \geq 0,$ and differentiation. We have the following refinement of Proposition 4.2.

Corollary 5.6. Suppose $n \in \mathbb{N}$ and $\alpha \geq 0$. Then $f \in K_\alpha(n)$ if and only if $R f \in K_{\alpha + 1}(n)$.

Proof. We apply Propositions 4.1, 4.2 and Corollary 5.5. \hfill \Box

The next corollary refines Theorem 4.3.

Corollary 5.7. Suppose $n \in \mathbb{N}$ and $\alpha \geq 0$. Then $f \in K_\alpha(n)$ if and only if $R^j f \in K_{\alpha + j}(n)$.

Proof. The case of $\alpha > 0$ is covered by Theorem 4.3. So, assume that $f \in K_0(n)$. Corollary 5.5 guarantees that $f \in K_1(n)$. On the other hand, $R f \in K_1(n)$ by Corollary 5.6. Therefore, $R^j f = f + R f \in K_1(n)$.

To prove the reverse implication, assume that $R^j f \in K_j(n)$. Since $K_1(n) \subset K_2(n)$, we have $R^j f \in K_0(n)$. Hence, $f \in K_1(n)$ by Theorem 4.5. Therefore, $R f = R^j f - f \in K_1(n)$. So, $f \in K_0(n)$ by Corollary 5.6. \hfill \Box
5.7. Modified Bergman–Sobolev spaces and $\mathcal{K}_\alpha(n)$. Suppose $n \in \mathbb{N}$, $j \in \mathbb{N}$, and $q > 0$. In some applications, it is convenient to use the modified Bergman–Sobolev space $\tilde{A}_q^1(B_n)$ in place of $A_q^1(B_n)$. By definition, the space $\tilde{A}_q^1(B_n)$ consists of functions $f \in \mathcal{H}(B_n)$ such that

$$
\| f \|_{\tilde{A}_q^1(B_n)} = \sum_{|m| \leq 1} \left| \frac{\partial^m f}{\partial z^m}(0) \right| + \int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|(1-r)^{q-1} d\sigma_n(\zeta) dr
$$

where $m = (m_1, \ldots, m_n) \in \mathbb{Z}_+^n$ and $|m| = m_1 + \cdots + m_n$. The space $\tilde{A}_q^1(B_n)$ with the norm $\| \cdot \|_{\tilde{A}_q^1(B_n)}$ is a Banach space (cf. [30, Proposition 6.2]).

Proposition 5.8. Suppose $n \in \mathbb{N}$, $j \in \{1, \ldots, n\}$, and $\alpha > n - j$.

(i) The embedding $\tilde{A}_q^1(B_n) \subset \mathcal{K}_\alpha(n)$ holds true. If $f \in \tilde{A}_q^1(B_n)$, then $\| f \|_{\mathcal{K}_\alpha(n)} \leq C \| f \|_{\tilde{A}_q^1(B_n)}$, where the constant $C > 0$ does not depend on f.

(ii) Let $\beta > \alpha$. Then $\mathcal{K}_\alpha(n) \subset \tilde{A}_q^1(B_n)$.

Proof. Assume that $f \in \tilde{A}_q^1(B_n)$. We have

$$
\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|(1-r)^{\alpha+j-1} d\sigma_n(\zeta) dr < +\infty.
$$

Since $\alpha + j > n$, Proposition 5.2 yields $R^j f \in \mathcal{K}_\alpha(n)$. Repeated application of Corollary 5.6 shows that $f \in \mathcal{K}_\alpha(n)$.

Now, consider the operator $I : \tilde{A}_q^1(B_n) \to \mathcal{K}_\beta(n)$ defined by $If = f$. If a functional sequence converges in the space $\tilde{A}_q^1(B_n)$ or in the space $\mathcal{K}_\alpha(n)$, then this sequence converges uniformly on the compact subsets of the ball B_n. Hence, the graph of the operator I is closed. So, by the closed graph theorem,

$$
\| f \|_{\mathcal{K}_\alpha(n)} \leq C \| f \|_{\tilde{A}_q^1(B_n)}
$$

for all $f \in \tilde{A}_q^1(B_n)$. Part (i) is proved.

Part (ii). Let $f \in \mathcal{K}_\alpha(n)$, $\alpha > n - j$. We have $R^j f \in \mathcal{K}_\alpha(n)$ by Proposition 4.2. To finish the argument, it suffices to repeat the proof of part (ii) of Proposition 5.3. \(\square\)

5.8. Fractional Cauchy transforms and inner functions. Assume that $n \in \mathbb{N}$, $j \in \mathbb{N}$, and $q > 0$. The space $\tilde{A}_q^2(B_n)$ consists of all functions $f \in \mathcal{H}(B_n)$ such that

$$
\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|^2(1-r)^{-q} d\sigma_n(\zeta) dr < +\infty.
$$

Lemma 5.9. Suppose $n \in \mathbb{N}$, $j \in \{1, \ldots, n\}$, and $\beta > \alpha > n - j$. Then

$$
H^\infty(B_n) \cap \mathcal{K}_\alpha(n) \subset \tilde{A}_q^2(B_n).
$$

Proof. Let $f \in H^\infty(B_n) \cap \mathcal{K}_\alpha(n)$. Since $f \in H^\infty(B_n)$, we have

$$
f(z) = \int_{\partial B_n} \frac{f^*(\zeta)}{(1-z, \zeta)^n} d\sigma_n(\zeta), \quad z \in B_n.
$$

Therefore,

$$
R f(z) = \int_{\partial B_n} \frac{n(z, \zeta)f^*(\zeta)}{(1-z, \zeta)^{n+1}} d\sigma_n(\zeta), \quad z \in B_n.
$$
Hence, using Lemma 3.1, we obtain

\[|Rf(z)| \leq \int_{\partial B_n} \frac{C}{|1 - (z, \zeta)|^{n+1}} \, d\sigma_n(\zeta) \leq \frac{C}{(1 - |z|)^j}, \quad z \in B_n. \]

Arguing similarly, we verify that

\[(5.4) \quad |R^j f(z)| \leq \frac{C}{(1 - |z|)^j}, \quad z \in B_n. \]

Since \(f \in \mathcal{K}_\alpha(n) \), Proposition 4.2 guarantees that \(R^j f \in \mathcal{K}_{\alpha+j}(n) \). Since \(\alpha + j > n \) and \(\beta > \alpha \), part (ii) of Proposition 5.8 yields

\[\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|(1 - r)^{\beta-n+j-1} \, d\sigma_n(\zeta) \, dr < \infty. \]

Hence, applying inequality (5.4), we get

\[\int_0^1 \int_{\partial B_n} |R^j f(r\zeta)|(1 - r)^j \cdot |R^j f(r\zeta)|(1 - r)^{\beta-n+j-1} \, d\sigma_n(\zeta) \, dr < +\infty, \]

as required. \(\square \)

Recall that a nonconstant function \(f \in H^\infty(B_n) \) is said to be inner if \(|f^*| = 1 \) \(\sigma_n \)-a.e. On the one hand, the families \(\mathcal{K}_\alpha(n) \) with \(\alpha \geq n \) contain all inner functions because \(H^\infty(B_n) \subset H^1(B_n) \subset \mathcal{K}_n(n) \subset \mathcal{K}_\alpha(n) \). On the other hand, the following assertion is true for \(n \geq 2 \).

Proposition 5.10. Let \(n \geq 2 \). If \(0 \leq \alpha < n - 1/2 \), then the family \(\mathcal{K}_\alpha(n) \) contains no inner functions.

Proof. Let \(f \in \mathcal{K}_\alpha(n) \) be an inner function. By Corollary 5.5 and part (ii) of Corollary 2.3, there is no loss of generality in assuming that \(\alpha \in (n - 1, n - 1/2) \).

Suppose \(\rho \in [1/2, 1) \) and \(f_\rho(\zeta) = f(\rho\zeta) \), \(\zeta \in \partial B_n \). For \(\zeta \in \partial B_n \) and \(\lambda \in B_1 \), put \(f_\lambda(\zeta) = f(\lambda\zeta) \). Observe that \(R f(\lambda\zeta) = \lambda f'_\lambda(\zeta) \); hence,

\[(5.5) \quad |f^*(\zeta) - f_\rho(\zeta)| \leq 2 \int_0^1 |R f(r\zeta)| \, dr \]

provided that \(f^*(\zeta) \) is well defined. Applying estimate (5.5), Hölder’s inequality, and Fubini’s theorem, we obtain

\[\|f_\rho - f^*\|_{L^2(\partial B_n)}^2 \leq C \int_{\partial B_n} \left(\int_0^1 |R f(r\zeta)|(1 - r)^{\frac{j}{2}}(1 - r)^{-\frac{n}{2}} \, dr \right)^2 \, d\sigma_n(\zeta) \]

\[\leq C(1 - \rho)^{\frac{j}{2}} \int_{\partial B_n} \int_0^1 |R f(r\zeta)|^2(1 - r)^{\frac{j}{2}} \, dr \, d\sigma_n(\zeta) \]

\[= o(1 - \rho)^{\frac{j}{2}} \text{ as } \rho \to 1 \]

by Lemma 5.9. Tamm [27] proved that no inner function can satisfy the estimate \(\|f_\rho - f^*\|_{L^2(\partial B_n)}^2 = o(1 - \rho)^{\frac{j}{2}} \) as \(\rho \to 1 \). This contradiction finishes the proof of the proposition. \(\square \)
§6. Boundary behavior

6.1. Directions of the maximal radial growth. The definition of the norm in the space $K_\alpha(n)$, $\alpha > 0$, implies that

$$|f(z)| \leq \frac{|f|_{K_\alpha(n)}}{(1 - |z|)^\alpha}, \quad z \in B_n.$$

Proposition 6.1 shows that this maximal growth is possible for an at most countable set of radial directions. For $n = 1$, this was proved in [28]. Suppose $\xi \in \partial B_n$ and $C > 1$. Recall that the corresponding Korányi domain $D_C(\xi)$ is defined by

$$D_C(\xi) = \{z \in B_n : |1 - \langle z, \xi \rangle| < C(1 - |z|)\}.$$

Proposition 6.1. Suppose $n \in \mathbb{N}$, $\mu \in M(n)$, $\alpha > 0$, and $f = K_\alpha[\mu]$. If $\xi \in \partial B_n$, then

$$\lim_{z \to \xi} \frac{(1 - \langle z, \xi \rangle)^\alpha}{(1 - |z|)^\alpha} f(z) = \mu(\{\xi\})$$

for all $C > 1$.

Proof. Let $\zeta, \xi \in \partial B_n$. We have

$$\lim_{z \to \xi} \frac{(1 - \langle z, \zeta \rangle)^\alpha}{(1 - |z|)^\alpha} = \delta_{\zeta, \xi},$$

where $\delta_{\zeta, \zeta} = 0$ for $\zeta \neq \xi$, and $\delta_{\zeta, \zeta} = 1$. If $z \in D_C(\xi)$, then

$$\left|\frac{1 - \langle z, \xi \rangle}{1 - \langle z, \zeta \rangle}\right| \leq \frac{|1 - \langle z, \xi \rangle|^\alpha}{|1 - \langle z, \zeta \rangle|^\alpha} \leq C^\alpha.$$

Hence, if $f = K_\alpha[\mu]$, then

$$\lim_{z \to \xi} \frac{(1 - \langle z, \xi \rangle)^\alpha}{(1 - |z|)^\alpha} f(z) = \lim_{z \to \xi} \int_{\partial B_n} \frac{(1 - \langle z, \xi \rangle)^\alpha}{(1 - |z|)^\alpha} d\mu(\zeta) = \mu(\{\xi\})$$

by the dominated convergence theorem. □

6.2. Radial behavior of functions in $K_\alpha(n)$ with $\alpha > n$. Recall that the Bloch space $\mathcal{B}(B_n)$ consists of the functions $f \in \mathcal{H}(B_n)$ such that

$$|R f(z)| \leq \frac{C}{1 - |z|}, \quad z \in B_n,$$

for some constant $C > 0$ (see [30, Chapter 3] for equivalent definitions).

Proposition 6.2. Suppose $n \in \mathbb{N}$ and $\alpha > n$. Then $\mathcal{B}(B_n) \subset K_\alpha(n)$.

Proof. Let $f \in \mathcal{B}(B_n)$, that is, $|R f(r\zeta)| \leq C(1 - r)^{-1}$ for all $\zeta \in \partial B_n$ and $r \in [0, 1)$. The assumption $\alpha > n$ guarantees that

$$\int_0^1 \int_{\partial B_n} |R f(r\zeta)| (1 - r)^{\alpha - n - 1} d\sigma_n(\zeta) dr < +\infty.$$

Since $\alpha + 1 > n$, we have $R f \in K_{\alpha + 1}(n)$ by Proposition 5.2. Finally, applying Corollary 5.6, we obtain $f \in K_\alpha(n)$. □

Corollary 6.3. Let $n \in \mathbb{N}$. Then there exists a function $f \in \bigcap_{\alpha > n} K_\alpha(n)$ such that the finite limit $\lim_{r \to 1^-} f(r\zeta)$ fails to exist for all $\zeta \in \partial B_n$.

Proof. Ullrich [28] constructed a function $f \in \mathcal{B}(B_n)$ with no finite radial limits. It remains to apply Proposition 6.2. □
6.3. Exceptional sets and Hausdorff contents: definitions. Let $0 < \tau \leq 1$, and let $\zeta \in \partial B_n$. Put

$$D_{\tau,C}(\zeta) = \{z \in B_n : |1 - (z, \zeta)| < C(1 - |z|)^\tau\},$$

where $C > 1$ for $\tau = 1$, and $C > 0$ for $\tau \in (0, 1)$. Note that the sets $D_{1,C}(\zeta)$ coincide with the Korányi domains $D_C(\zeta)$, which were considered in Subsection 6.1. Also, note that the order of contact between the set $D_{\tau,C}(\zeta)$ and the sphere ∂B_n increases as the parameter τ decreases.

Consider a function $f : B_n \to \mathbb{C}$. By definition, the set $E_{\tau,C}(f)$ consists of all $\zeta \in \partial B_n$ for which the function $f(z)$ fails to have a limit at the point ζ as z approaches ζ through $D_{\tau,C}(\zeta)$. The sets $E_{1,C}(f)$ are said to be exceptional; the sets $E_{\tau,C}(f)$, $0 < \tau < 1$, are tangentially exceptional.

To estimate the size of the sets $E = E_{\tau,C}(f)$ for $f \in K_\alpha(n)$, it is natural to apply the nonisotropic Hausdorff contents, which are defined as follows:

$$(6.1) \quad H_m(E) = H_m(E, \partial B_n) = \inf \left\{ \sum_k \delta_k^m : E \subset \bigcup_k Q(\zeta_k, \delta_k) \right\},$$

where $\zeta_k \in \partial B_n$ and $Q(\zeta, \delta) = \{\xi \in \partial B_n : |1 - (\zeta, \xi)| < \delta\}$.

6.4. Hardy–Sobolev spaces. Assume that a function $f \in \mathcal{H}ol(B_n)$ has homogeneous expansion $f = \sum_k f_k$. Then the fractional derivative of order $\beta > 0$ is defined by the formula

$$R^\beta f(z) = \sum_k (k + 1)^\beta f_k(z), \quad z \in B_n.$$

For $\beta > 0$ and $0 < p < \infty$, the Hardy–Sobolev spaces are defined by

$$H_p^\beta(B_n) = \left\{ f \in \mathcal{H}ol(B_n) : \sup_{0 < r < 1} \int_{\partial B_n} |R^\beta f(r\zeta)|^p \, d\sigma_n(\zeta) < \infty \right\}.$$

Theorem 6.4 (Ahern and Cohn [1]). Let $n - \beta p > 0$. If $f \in H_p^\beta(B_n)$, then

$$H_{n-\beta p+\varepsilon}(E(f)) = 0$$

for all $\varepsilon > 0$.

Theorem 6.5 (Cascante and Ortega [8, Corollary 2.1]; see also [26]). Assume that $n \in \mathbb{N}$, $0 < p < \infty$, $0 < \beta < n/p$, $0 < \tau < 1$, and $m = (n - \beta p)/\tau$. If $f \in H_p^\beta(B_n)$, then $H_m(E_{\tau,C}(f)) = 0$ for all $C > 0$.

6.5. Exceptional sets. By Corollary 6.3, there exists a function $f \in \bigcap_{\alpha > n} K_\alpha(n)$ such that $E_{1,C}(f) = \partial B_n$ for all $C > 1$. On the other hand, if $0 \leq \alpha \leq n$, then $K_\alpha(n) \subset H_p^\beta(B_n)$ for all $0 < p < 1$. Hence, if $f \in K_\alpha(n)$, $0 \leq \alpha \leq n$, then $\sigma_n(E_{1,C}(f)) = 0$ for all $C > 1$. This observation can be refined in the case where $0 \leq \alpha < n$. For the spaces $K_\alpha(1)$, $0 \leq \alpha < 1$, similar refinements in terms of the Bessel capacities were obtained in [12].

Proposition 6.6. Suppose $n \in \mathbb{N}$ and $\alpha \in (0,n)$. If $f \in K_\alpha(n)$, then $H_{n+\varepsilon}(E_{1,C}(f)) = 0$ for all $\varepsilon > 0$ and $C > 1$.

Proof. Let $n - \alpha > \varepsilon > 0$. Then $K_\alpha(n) \subset A^1_{n+\varepsilon,n}(B_n) \subset H^1_{n-\alpha-\varepsilon}(B_n)$ by Proposition 5.3 and by [4, Theorem 5.12], respectively. It remains to apply Theorem 6.3.

The following example corresponds to Proposition 6.6.

Proposition 6.7. Suppose $n \in \mathbb{N}$, $\alpha \in (0,n)$, $0 \leq m < \alpha$, $E \subset \partial B_n$ is a compact set, $H_m(E) = 0$, and $C > 1$. Then $E = E_{1,C}(f)$ for some function $f \in K_\alpha(n)$.
Proof. Fix $p_0 > 1$ such that $m = n - (n - \alpha)p_0$. We have $H_m(E) = 0$; hence, Theorem 1.2 in [11] guarantees that $E = E_{I,C}(f)$ for some function $f \in H_{n-\alpha}^p(B_n)$. Next, recall that
\[K_{n-\alpha}^p(n) = \{ K_\alpha[g\sigma_n] : g \in L^p_\alpha(\sigma_n) \}. \]
By [8, Theorem 2.1], we have $H_{n-\alpha}^p(B_n) = K_{n-\alpha}^p(n)$. It remains to note that $K_{n-\alpha}^p(n) \subset K_\alpha(n)$. □

6.6. Tangentially exceptional sets.
For the spaces $K_\alpha(1) \leq \alpha < 1$, tangentially exceptional sets were investigated in [10]. In the case of an arbitrary dimension $n \in \mathbb{N}$, the following assertion holds true.

Proposition 6.8. Suppose $n \in \mathbb{N}$, $\alpha \in (0, n)$, $\tau \in (\alpha/n, 1)$, and $m > \alpha/\tau$. If $f \in K_\alpha(n)$, then $H_m(E_{\tau,C}(f)) = 0$ for all $C > 0$.

Proof. We have $K_\alpha(n) \subset H_{n-\alpha-\epsilon}(B_n)$ for $n - \alpha > \epsilon > 0$. It remains to apply Theorem 6.5. □

The following example corresponds to Proposition 6.8.

Proposition 6.9. Suppose $n \in \mathbb{N}$, $\alpha \in (0, n)$, and $\tau = \alpha/n, 1)$, $m < \alpha/\tau$, and $C > 0$. If $E \subset \partial B_n$ is a compact set and $H_m(E) = 0$, then $E = E_{\tau,C}(f)$ for some function $f \in K_\alpha(n)$.

Proof. Since $m < \alpha/\tau$, there exists $p_0 > 1$ such that
\[m = (n - (n - \alpha)p_0)/\tau. \]
Since $p_0 > 1$ and $H_m(E) = 0$, we have $E = E_{\tau,C}(f)$ for some function $f \in K_{n-\alpha}^p(n)$; see [26, Remark after Corollary 3.11]. It remains to note that $K_{n-\alpha}^p(n) \subset K_\alpha(n)$. □

§7. Multipliers

In this section, we study the spaces $\mathfrak{M}_\alpha(n)$ that consist of multipliers for the families $K_\alpha(n)$. Note that multipliers for the Hardy–Sobolev spaces were investigated in the recent papers [22, 5, and 26].

7.1. Necessary conditions.
For $n = 1$, the results of this subsection were obtained in [10].

Lemma 7.1. Suppose $n \in \mathbb{N}$, $\alpha > 0$, and $f \in \mathfrak{M}_\alpha(n)$. Then $f \in H^\infty(B_n)$; moreover,
\[\|f\|_{H^\infty(B_n)} \leq \|f\|_{\mathfrak{M}_\alpha(n)}. \]

Proof. Fix a point $\zeta \in \partial B_n$ and fix a constant K for which $\|f\|_{\mathfrak{M}_\alpha(n)} < K$. Since $\|(1 - \langle \cdot, \zeta \rangle)^{-\alpha}\|_{K_\alpha(n)} = 1$, there exists a measure $\mu_\zeta \in \mathcal{M}(n)$ such that $\|\mu_\zeta\|_{\mathcal{M}(n)} < K$ and
\[f(z) = \int_{\partial B_n} \frac{1}{(1 - \langle z, \xi \rangle)^\alpha} d\mu_\zeta(\xi). \]
In other words,
\[f(z) = \int_{\partial B_n} \left(\frac{1 - \langle z, \xi \rangle}{1 - \langle \zeta, \xi \rangle} \right)^\alpha d\mu_\zeta(\xi). \]
Put $z = r\zeta$, $0 \leq r < 1$. Then
\[|f(r\zeta)| \leq \int_{\partial B_n} \left(\frac{1 - r}{1 - r|\zeta, \xi|} \right)^\alpha d\mu_\zeta(\xi) \leq \|\mu_\zeta\|_{\mathcal{M}(n)} < K. \]
Since the point $\zeta \in \partial B_n$ and the constant $K > \|f\|_{\mathfrak{M}_\alpha(n)}$ are arbitrary, we have $\|f\|_{H^\infty(B_n)} \leq \|f\|_{\mathfrak{M}_\alpha(n)}$. □
Lemma 7.2. Suppose \(n \in \mathbb{N}, \alpha > 0, \) and \(f \in \mathcal{M}_\alpha(n). \) Then \(f \in \mathcal{K}_\alpha(n); \) moreover, \(\|f\|_{\mathcal{K}_\alpha(n)} \leq \|f\|_{\mathcal{M}_\alpha(n)}. \)

Proof. Put \(I(z) = 1 \) for \(z \in B_n. \) Recall that \(I = K_\alpha[\sigma_n]. \) Since \(\sigma_n \) is a positive measure, we have \(\|I\|_{\mathcal{K}_\alpha(n)} = \|\sigma_n\| = 1. \) The assumption \(f \in \mathcal{M}_\alpha(n) \) implies that \(f = fI \in \mathcal{K}_\alpha(n). \) Moreover, \(\|f\|_{\mathcal{K}_\alpha(n)} = \|fI\|_{\mathcal{K}_\alpha(n)} \leq \|f\|_{\mathcal{M}_\alpha(n)} \|I\|_{\mathcal{K}_\alpha(n)} = \|f\|_{\mathcal{M}_\alpha(n)}. \) \(\square \)

Proposition 7.3. Let \(\alpha > 0. \) Then there exists a constant \(C_\alpha \) such that, for any \(f \in \mathcal{M}_\alpha(n) \) and any \(n \in \mathbb{N}, \) the radial variation in the direction \(\xi \in \partial B_n \) satisfies the estimate \(V(f, \xi) \leq C_\alpha\|f\|_{\mathcal{M}_\alpha(n)} \) for all \(\xi \in \partial B_n. \)

Proof. Suppose \(f \in \mathcal{M}_\alpha(n), \) \(\xi \in \partial B_n, \) and \(\varepsilon > 0. \) By the definition of the space \(\mathcal{M}_\alpha(n), \) there exists a measure \(\mu_\xi \) such that \(\|\mu_\xi\|_{M(n)} \leq \|f\|_{\mathcal{M}_\alpha(n)} + \varepsilon \) and

\[
f(z) = \int_{\partial B_n} \frac{(1 - (z, \xi))^\alpha}{(1 - (z, \zeta))^\alpha} d\mu_\xi(\zeta), \quad z \in B_n.
\]

Let \(\lambda \in B_1. \) We put \(z = \lambda \xi \) and \(f_\xi(\lambda) = f(\lambda \xi). \) Then

\[
f_\xi(\lambda) = \int_{\partial B_n} \frac{(1 - \lambda)^\alpha}{(1 - \lambda(\xi, \zeta))^\alpha} d\mu_\xi(\zeta), \quad f_\xi'(\lambda) = \alpha \int_{\partial B_n} \frac{(1 - \lambda)^{\alpha - 1}(\xi, \zeta) - 1}{(1 - \lambda(\xi, \zeta))^{\alpha + 1}} d\mu_\xi(\zeta).
\]

Now, set \(\lambda = r, 0 \leq r < 1. \) Fubini’s theorem guarantees that

\[
(7.1) \quad \int_0^1 |f'_\xi(r)| dr \leq \alpha \int_{\partial B_n} \int_0^1 \frac{(1 - r)^{\alpha - 1}|1 - (\xi, \zeta)|}{|1 - r(\xi, \zeta)|^{\alpha + 1}} dr d\mu_\xi(\zeta).
\]

Put \(w = (\xi, \zeta) \) and \(b = |1 - (\xi, \zeta)|. \) Observe that

\[|1 - rw|^2 = (1 - r)(1 - r|w|^2) + r|1 - w|^2 \geq (1 - r)^2 + r^2b^2.\]

Hence,

\[
\int_0^1 \frac{(1 - r)^{\alpha - 1}b}{|1 - r(\xi, \zeta)|^{\alpha + 1}} dr \leq \int_0^1 \frac{(1 - r)^{\alpha - 1}b}{((1 - r)^2 + r^2b^2)^{\alpha + 1/2}} dr := I(\alpha, b).
\]

If \(b = 0, \) then the proof is finished. Otherwise, as was shown in the proof of Theorem 2.6 in [10], we have \(I(\alpha, b) \leq C_\alpha < \infty. \) Therefore, estimate (7.1) implies that \(V(f, \xi) \leq C_\alpha\|f\|_{\mathcal{M}_\alpha(n)}. \) The proof of the proposition is finished. \(\square \)

Recall that a bounded nonconstant function \(f \in \mathcal{H}ol(B_n) \) is said to be inner if \(|f^*| = 1 \) \(\sigma_n \)-a.e. A complete description of the inner functions belonging to \(\mathcal{M}_1(1) \) was obtained in [18]. For arbitrary \(\alpha > 0, \) the inner functions in the family \(\mathcal{M}_\alpha(1) \) were investigated in [13]. For \(n \geq 2, \) the answer to the corresponding question follows from Proposition 7.3.

Corollary 7.4. Assume that \(n \geq 2 \) and \(\alpha > 0. \) If \(f \) is an inner function in the ball \(B_n, \) then \(f \notin \mathcal{M}_\alpha(n). \)

Proof. For \(n \geq 2, \) it is well known that any inner function has no radial limits on a dense subset of the sphere \(\partial B_n; \) see [24, §1]. \(\square \)
7.2. Sufficient conditions. Recall that $A(B_n)$ denotes the ball algebra. If $f \in A(B_n)$, then put $f^* = f|_{\partial B_n}$. The complex modulus of continuity of the function f^* is defined by

$$\omega_C(f^*, \delta) = \sup_{|\zeta - \xi| \leq \delta} \left\{ |f^*(\zeta) - f^*(\xi)| : d(\zeta, \xi) \leq \delta \right\},$$

where $\delta \in (0, 2]$ and $d(\zeta, \xi) = |1 - \langle \zeta, \xi \rangle|$. Note that $d(\zeta, \xi)$ is a quasimetric on the sphere.

Let ν_n denote the Lebesgue measure on B_n normalized by the condition $\nu_n(B_n) = 1$.

Suppose that $n \geq 2$. For a Borel function $f : B_1 \to \mathbb{C}$, it is well known that the identity

$$(7.2) \quad \int_{\partial B_n} f(\langle \zeta, \xi \rangle) \, d\nu_n(\xi) = (n - 1) \int_{B_1} f(z)(1 - |z|^2)^{n-2} \, dv_1(z)$$

is fulfilled if its left-hand side or right-hand side is well defined.

An analog of the following statement for $n = 1$ was proved in [29].

Proposition 7.5. Let $\alpha \geq n \geq 2$. Suppose that a function $g \in A(B_n)$ satisfies the following condition:

$$(7.3) \quad (n - 1) \int_{B_1} \frac{(1 - |z|^2)^{n-2}\omega_C(g^*, |1 - z|)}{|1 - z|^n} \, dv_1(z) = C_\omega < +\infty.$$

Then $g \in \mathcal{M}_\alpha(n)$.

Proof. By Lemma 2.4 and Proposition 2.5, it suffices to verify that the function g satisfies condition (2.5) with $\alpha = n$.

Fix a point $\zeta \in \partial B_n$. Then

$$\frac{g(w)}{(1 - \langle w, \zeta \rangle)^n} = \frac{g(w) - g(\zeta)}{(1 - \langle w, \zeta \rangle)^n} + \frac{g(\zeta)}{(1 - \langle w, \zeta \rangle)^n} = h_1(w) + h_2(w), \quad w \in B_n.$$

Observe that $\|h_2\|_{K_\alpha(n)} \leq \|g\|_{A(B_n)}$.

On the other hand, we have $g(\cdot) - g(\zeta) \in H^\infty(B_n)$ and $(1 - \langle \cdot, \zeta \rangle)^{-n} \in H^p(B_n)$ for all $0 < p < 1$. Hence, $h_1 \in H^p(B_n)$ for all $0 < p < 1$. Let $h_1^*(\xi) = \lim_{r \to 1^-} h_1(r\xi), \xi \in \partial B_n, \xi \neq \zeta$. Formula (7.2) and condition (7.3) show that $\|h^*\|_{L^1(\partial B_n)} \leq C_\omega$. Therefore, $h_1 \in H^1(B_1)$; also, we obtain $\|h_1\|_{K_\alpha(n)} \leq \|h_1\|_{H^1(B_n)} \leq C_\omega$. This proves (2.5). \hfill \Box

Assume that $0 < \beta < 1$. By definition, the standard Lipschitz space $\Lambda^\beta(\partial B_n)$ consists of all functions $f : \partial B_n \to \mathbb{C}$ such that

$$|f(\zeta) - f(\xi)| \leq C_f |\zeta - \xi|^\beta$$

for all $\zeta, \xi \in \partial B_n$. In other words, $\Lambda^\beta(\partial B_n)$ are the Lipschitz spaces with respect to the Euclidean metric on the sphere. Elements of these spaces can be used to construct examples of functions belonging to families $\mathcal{M}_\alpha(n)$ with $\alpha \geq n$.

Corollary 7.6. Suppose $n \geq 2$, $0 < \beta < 1/2$, and $f \in \Lambda^\beta(\partial B_n)$. Then $K_n[f] \in \mathcal{M}_\alpha(n)$ for $\alpha \geq n$.

Proof. Let $f \in \Lambda^\beta(\partial B_n)$. It is well known that $\omega_C(K_n[f]^*, \delta) = \mathcal{O}(\delta^\beta)$ (see [2]). Hence, condition (7.3) is satisfied. \hfill \Box

Explicit examples of functions belonging to $\mathcal{M}_\alpha(n)$, $\alpha \geq 0$, can be obtained with the help of the following assertion.

Proposition 7.7. Suppose $n \in \mathbb{N}$, $j \in \{0, 1, \ldots, n\}$, and $\alpha \geq n - j$. Also, suppose that the derivative $R^j g \in A(B_n)$ satisfies condition (7.3). Then $g \in \mathcal{M}_\alpha(n)$.

Proof. We argue by induction. As the base of induction, we take the case of $j = 0$. Then the claim is true by Proposition 7.5.
Now, let \(k \in \{0, 1, \ldots, n - 1\} \). Assume that the required implication is proved for \(j = k \).

Suppose \(j = k + 1 \in \{1, \ldots, n\} \) and \(f \in K_\alpha(n), \alpha \geq n - j \). We must prove that \(f g \in K_\alpha(n) \). Since \(\alpha \geq n - j \geq 0 \), Corollary 5.6 guarantees that \(f g \in K_\alpha(n) \) if and only if \(R(f g) \in K_{\alpha+1}(n) \). Note that

\[R(f g) = f Rg + g Rf. \]

The function \(R^{-1}(Rg) \in A(B_n) \) satisfies condition \((7.3)\). We have \(\alpha + 1 \geq n - (j - 1) \); hence, \(Rg \in M_{\alpha+1}(n) \) by the inductive hypothesis. Since \(f \in K_\alpha(n) \subset K_{\alpha+1}(n) \), we obtain \(f Rg \in K_{\alpha+1}(n) \) by the definition of the multiplier space.

On the other hand, \(f \in K_\alpha(n) \) if and only if \(Rf \in K_{\alpha+1}(n) \). Next, the function \(R^{-1}g \in A(B_n) \) satisfies condition \((7.3)\). By the inductive hypothesis, we have \(g \in M_{\alpha+1}(n) \); thus, \(g Rf \in K_{\alpha+1}(n) \).

Therefore, \(R(f g) \in K_{\alpha+1}(n) \) and \(f g \in K_\alpha(n) \). The induction step is finished, and the proposition is proved.

The author is grateful to A. B. Aleksandrov for suggested improvements and useful comments.

ACKNOWLEDGMENT

The author is grateful to A. B. Aleksandrov for suggested improvements and useful comments.

REFERENCES

Received 23/NOV/2008

Translated by THE AUTHOR

St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

E-mail address: dubtsov@pdmi.ras.ru

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use