Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Blaschke products and nonideal ideals in higher order Lipschitz algebras


Author: K. M. Dyakonov
Original publication: Algebra i Analiz, tom 21 (2009), nomer 6.
Journal: St. Petersburg Math. J. 21 (2010), 979-993
MSC (2010): Primary 30J10, 30H10, 46J15, 46J20
DOI: https://doi.org/10.1090/S1061-0022-2010-01127-0
Published electronically: September 22, 2010
MathSciNet review: 2604546
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate certain ideals (associated with Blaschke products) of the analytic Lipschitz algebra $ A^\alpha$, with $ \alpha>1$, that fail to be ``ideal spaces''. The latter means that the ideals in question are not describable by any size condition on the function's modulus. In the case where $ \alpha=n$ is an integer, we study this phenomenon for the algebra $ H^\infty_n=\{f : f^{(n)}\in H^\infty\}$ rather than for its more manageable Zygmund-type version. This part is based on a new theorem concerning the canonical factorization in $ H^\infty_n$.


References [Enhancements On Off] (What's this?)

  • 1. L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345. MR 0050011 (14:261a)
  • 2. K. M. Dyakonov, Smooth functions and coinvariant subspaces of the shift operator, Algebra i Analiz 4 (1992), no. 5, 117-147; English transl., St. Petersburg Math. J. 4 (1993), no. 5, 933-959. MR 1202727 (94c:30045)
  • 3. -, Division and multiplication by inner functions and embedding theorems for star-invariant subspaces, Amer. J. Math. 115 (1993), 881-902. MR 1231150 (94k:30087)
  • 4. -, Multiplication by Blaschke products and stability of ideals in Lipschitz algebras, Math. Scand. 73 (1993), 246-258. MR 1269262 (95m:30049)
  • 5. -, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), 143-167. MR 1459259 (98g:46029)
  • 6. -, Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math. 187 (2004), 146-172. MR 2074174 (2006d:30049)
  • 7. -, Self-improving behaviour of inner functions as multipliers, J. Funct. Anal. 240 (2006), 429-444. MR 2261690 (2007f:30087)
  • 8. E. M. Dyn$ '$kin, Free interpolation sets for Hölder classes, Mat. Sb. (N.S.) 109 (151) (1979), no. 1, 107-128; English transl., Math. USSR-Sb. 37 (1980), no. 1, 97-117. MR 0538552 (82e:30043)
  • 9. -, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45-70. MR 1253229 (95a:30030)
  • 10. J. B. Garnett, Bounded analytic functions, Pure Appl. Math., vol. 96, Acad. Press, Inc., New York-London, 1981. MR 0628971 (83g:30037)
  • 11. V. P. Havin, Factorization of analytic functions smooth up to the boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 202-205; English transl., J. Soviet Math. 2 (1974), no. 2, 228-231. MR 0289783 (44:6970)
  • 12. N. A. Shirokov, Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 413-439. MR 0643387 (83c:30028)
  • 13. -, Free interpolation in spaces $ C^A_{r,\omega}$, Mat. Sb. (N.S.) 117 (159) (1982), no. 3, 337-358; English transl., Math. USSR-Sb. 45 (1983), no. 3, 337-358. MR 0648412 (84h:30056)
  • 14. -, Analytic functions smooth up to the boundary, Lecture Notes in Math., vol. 1312, Springer-Verlag, Berlin, 1988. MR 0947146 (90h:30087)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30J10, 30H10, 46J15, 46J20

Retrieve articles in all journals with MSC (2010): 30J10, 30H10, 46J15, 46J20


Additional Information

K. M. Dyakonov
Affiliation: ICREA and Universitat de Barcelona, Departament de Matemàtica Aplicada i Anàlisi, Gran Via 585, E-08007 Barcelona, Spain
Email: dyakonov@mat.ub.es

DOI: https://doi.org/10.1090/S1061-0022-2010-01127-0
Keywords: Inner functions, Blaschke products, Lipschitz spaces, ideals
Received by editor(s): January 14, 2009
Published electronically: September 22, 2010
Additional Notes: Supported in part by grant MTM2008-05561-C02-01 from El Ministerio de Ciencia e Innovación (Spain) and grant 2009-SGR-1303 from AGAUR (Generalitat de Catalunya).
Dedicated: To Victor Petrovich Havin, with admiration (best phrased as a palindrome): \Russian{VOT PEDAGOG ADEPTOV}!
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society