Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Cluster $ \mathcal X$-varieties for dual Poisson-Lie groups. I

Author: R. Brahami
Original publication: Algebra i Analiz, tom 22 (2010), nomer 2.
Journal: St. Petersburg Math. J. 22 (2011), 183-250
MSC (2010): Primary 22E70, 81R10
Published electronically: February 8, 2011
MathSciNet review: 2668124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We associate a family of cluster $ \mathcal X$-varieties with the dual Poisson-Lie group $ G^*$ of a complex semisimple Lie group $ G$ of adjoint type given with the standard Poisson structure. This family is described by the $ W$-permutohedron associated with the Lie algebra $ \mathfrak{g}$ of $ G$, vertices being labeled by cluster $ \mathcal X$-varieties and edges by new Poisson birational isomorphisms on appropriate seed $ \mathcal X$-tori, called saltation. The underlying combinatorics is based on a factorization of the Fomin-Zelevinsky twist maps into mutations and other new Poisson birational isomorphisms on seed $ \mathcal X$-tori, called tropical mutations (because they are obtained by a tropicalization of the mutation formula), associated with an enrichment of the combinatorics on double words of the Weyl group $ W$ of $ G$.

References [Enhancements On Off] (What's this?)

  • [AM94] A. Yu. Alekseev and A. Z. Malkin, Symplectic structures associated to Lie-Poisson groups, Comm. Math. Phys. 162 (1994), no. 1, 147-173. MR 1272770 (95g:58074)
  • [BFZ05] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52. MR 2110627 (2005i:16065)
  • [BZ01] Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77-128. MR 1802793 (2002c:17005)
  • [BB05] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Grad. Texts in Math., vol. 231, Springer, New York, 2005. MR 2133266 (2006d:05001)
  • [B] Renaud Brahami, Cluster $ \mathcal X$-varieties and dual Poisson-Lie groups. II (in preparation).
  • [EL07] Sam Evens and Jiang-Hua Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple group, Mosc. Math. J. 7 (2007), no. 4, 613-642. (English) MR 2372206 (2008k:53181)
  • [FG06a] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. No. 103 (2006), 1-211. MR 2233852 (2009k:32011)
  • [FG06b] -, Cluster $ \mathcal X$-varieties, amalgamation, and Poisson-Lie groups, Algebraic Geometry and Number Theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 27-68. MR 2263192 (2008b:22009)
  • [FG07a] -, Cluster ensembles, quantization and the dilogarithm, arXiv:math/0311245.
  • [FG07b] -, The quantum dilogarithm and unitary representations quantized cluster varieties, arXiv:math/0702397.
  • [FR07] Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Geometric Combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 63-131. MR 2383126
  • [FST] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. Pt. I: Cluster complexes, arXiv:math/0608367.
  • [FZ02] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529. MR 1887642 (2003f:16050)
  • [FZ03a] -, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121. MR 2004457 (2004m:17011)
  • [FZ07] -, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112-164. MR 2295199 (2008d:16049)
  • [FZ99] -, Double Bruhat cells and total positivity. J. Amer. Math. Soc. 12 (1999), no. 2, 335-380. MR 1652878 (2001f:20097)
  • [FH91] W. Fulton and J. Harris, Representation theory, Grad. Texts in Math., vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
  • [GSV03] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899-934. (English) MR 2078567 (2005i:53104)
  • [HKKR00] T. Hoffmann, J. Kellendonk, N. Kutz, and N. Reshetikhin, Factorization dynamics and Coxeter-Toda lattices, Comm. Math. Phys. 212 (2000), no. 2, 297-321. MR 1772248 (2001g:37098)
  • [KZ02] Mikhail Kogan and Andrei Zelevinsky, On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups, Int. Math. Res. Not. 2002, no. 32, 1685-1702. MR 1916837 (2003k:53107)
  • [LW90] Jiang-Hua Lu and Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), no. 2, 501-526. MR 1037412 (91c:22012)
  • [P05] A. Postnikov, Permutohedra, associahedra, and beyond, arXiv:math/0507163v1. Int. Math. Res. Not. 2009, no. 6, 1026-1106. MR 2487491 (2010g:05399)
  • [R03] N. Reshetikhin, Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson Lie structure, Comm. Math. Phys. 242 (2003), 1-29. MR 2018267 (2004m:37108)
  • [STS85] M. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1237-1260. MR 0842417 (88b:58057)
  • [STS93] -, Poisson-Lie groups. The quantum duality principle and the twisted quantum double, Teoret. Mat. Fiz. 93 (1992), no. 2, 302-329; English transl., Theoret. and Math. Phys. 93 (1992), no. 2, 1292-1307 (1993). MR 1233548 (94e:58007)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 22E70, 81R10

Retrieve articles in all journals with MSC (2010): 22E70, 81R10

Additional Information

R. Brahami
Affiliation: Institut Mathématique de Bourgogne, Dijon, France

Keywords: Cluster combinatorics, Poisson structure, tropical mutation, saltations
Received by editor(s): September 22, 2009
Published electronically: February 8, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society