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ON RATIONAL SYMPLECTIC PARAMETRIZATION

OF THE COADJOINT ORBIT OF GL(N). DIAGONALIZABLE CASE

M. V. BABICH AND S. E. DERKACHOV

Dedicated to L. D. Faddeev on the occasion of his 75th birthday

Abstract. Amethod for constructing birational Darboux coordinates on a coadjoint
orbit of the general linear group is presented. This method is based on the Gauss de-
composition of a matrix in the product of an upper-triangular and a lower-triangular
matrix. The method works uniformly for the orbits formed by the diagonalizable
matrices of any size and for arbitrary dimensions of the eigenspaces.

§0. Introduction

Our aim in this paper is to present a method for canonical parametrization of an
important algebraic symplectic manifold, namely, a coadjoint orbit of the complex general
linear group; see [4, 5, 10].

The problem of description of any manifold consists of two steps. First, we should
construct charts. They are sets keeping the information about the local structure of the
manifold. The charts should have a global structure as simple as possible. The second
step is creation of the atlas. We should glue the charts in a proper way. The law of
gluing is stated by the transition functions, which identify the overlapping parts of the
charts. The transition functions set the global structure of the manifold.

Largely, this article is devoted to the first step. We construct one chart, a Zariski open
subset of the orbit. Such a domain covers the entire orbit except for several submanifolds
of dimension smaller than the dimension of the orbit. The parametrization of the charts
is given analytically in Theorems 2 and 3.

To describe the covering, we point out what subspaces must be in general position
with the coordinate subspaces. Different charts are parametrized by renumberings of the
coordinates. The transition functions can be obtained by reparametrization of the domain
already parametrized in the renumerated basis. We do not present these formulas: they
are bulky and useless.

It should be noted that the relative arrangement of the coordinate domains of the
orbit should be well understood for the following reason. There are problems where we
need to glue different orbits (i.e., orbits that differ by the spectral structure of matrices
they involve) to one algebraic symplectic manifold. The organization of the maps in the
atlases of these manifolds is similar to the organization of the maps in one orbit. As
important examples, we mention the phase spaces of the systems of equations of the
isomonodromic deformations [6]–[8].

We identify gl(N,C) with its dual gl∗(N,C) by using the nondegenerate form 〈A,B〉 =
trAB. Then the coadjoint orbits are identified with the adjoint orbits. Let OJ be the
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orbit that contains a Jordan matrix1 J . It is formed by the matrices

A = g J g−1,

where g ∈ GL(N,C). Thus, the orbit is parametrized by the matrix entries of A. They
form the set of coordinate functions Ai,j : OJ → C.

It is our aim to find a set of functions pk, qk birational with respect to Aij and canon-
ically conjugated with respect to the symplectic structure of the orbit. We use the
following formula [1] for the symplectic form on the orbit:

(1) ωO(ξ, η) = trUξȦη = − trUηȦξ,

where ξ, η ∈ TAO are two vectors tangent to the orbit O at the point A ∈ O,

ξ = [Uξ, A] =
d

dt

∣∣∣
t=0

Aξ(t) =: Ȧξ, Aξ(0) = A,

η = [Uη, A] =
d

dt

∣∣∣
t=0

Aη(t) =: Ȧη, Aη(0) = A.

This means that

ωO(∂pi
, ∂qj ) = δij , 0 = ωO(∂pi

, ∂pj
) = ωO(∂qi , ∂qj ),

where the ∂pk
, ∂qk are dual to the dpk, dqk.

We treat A as the matrix of a linear transformation A : V → V in some basis
(e1, e2, . . . , eN ) that is fixed initially.

So, there is a basis in which A has matrix J . Of course, there is a nontrivial family
of such bases parametrized by matrices commuting with J . In this paper we consider a
diagonal J only.

Restriction 1. The matrix A has a complete set of eigenvectors, and the matrix J is
diagonal.

We order the eigenvalues of A in some way:

λ0, λ1, . . . , λN , λi = λj ⇐⇒ i = j.

The method we propose is iterative. Each iteration reduces the parametrization of
an orbit to that of an orbit of smaller dimension. The number of different eigenvalues
on the parametrizing orbit decreases by one; we remove λk’s from the set of eigenvalues
sequentially. The difference of the dimensions of the matrices after an iteration is equal
to the multiplicity of the removed eigenvalue λk : dimker(A− λkI) =: nk.

We get the sequence

A = rA0, A0 ∈ End(V0) → rA1, A1 ∈ End(V1) → · · ·
→ rAN−1, AN−1 ∈ End(VN−1) → rAN , AN = 0 ∈ End(VN ).

The dimension of the space Vk where the transformations rAk and Ak are defined is

equal to nk + nk+1 + · · · + nN = dimVk. The matrix Ak differs from rAk by a matrix
proportional to the unit matrix:

Ak = rAk − (λk − λk−1)I, k = 0, 1, . . . , N ; λ−1 := 0.

We have dim kerAk = nk, so that the initial A should be denoted by rA0. After that,

we consider A0 := rA0 − λ0I and the first iteration gives an rA1 that acts on the space
V1. The second iteration starts with a transformation of the eigenspace corresponding

to λ1 − λ0 to the root space: A1 := rA1 − (λ1 − λ0)I.

1That is, a matrix in the normal Jordan form; see [2, 3].
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The eigenvalues of the matrix rAk and its normal Jordan form J
rAk

are λk − λk−1,
λk+1 − λk−1, . . . , λN − λk−1. The multiplicity of λj − λk−1 is equal to nj , j = k, . . . , N .

The eigenvalues of the matrix Ak := rAk−(λk−λk−1)I and the eigenvalues of its normal
Jordan form JAk

= J
rAk

− (λk − λk−1)I are 0, λk+1 − λk, . . . , λN − λk. The multiplicity
of the kernel is equal to nk; the multiplicity of λj − λk is equal to nj , j = k + 1, . . . , N .

The eigenvalues of the matrix rAk+1 obtained by iteration from Ak are λk+1 − λk,
λk+2 − λk, . . . , λN − λk. The multiplicity of the eigenvalue λj − λk is still equal to nj .
The normal Jordan form J

rAk+1
is obtained by crossing out the zero lines and zero rows

from JAk
.

Finally, we get a zero-dimensional orbit.
Each iteration k → k + 1 gives a couple of sets of nk × (nk+1 + nk+2 + · · · + nN )

functions, which determine the positions of two dual subspaces, namely, the kernel and
the image of Ak.

The coordinate functions that give the position of the kernel are the coordinates of
a basis of the kernel. The basis is normalized in such a way that the basis vector with
number “s” has a unit coordinate with the number “s”, and all its first nk coordinates
different from “s” vanish.

The coordinate functions that give the position of the image are the coordinates of the
projection along Vk of the Ak-image of the fixed basis of Vk to the coordinate subspace
enveloping the first nk basis vectors. This projection is the projection to the coordinate
subspace enveloping the first nk basis vectors parallel to the subspace enveloping the last
nk+1 + nk+2 + · · ·+ nN basis vectors.

As has already been mentioned, we consider diagonalizable matrices only. In the case
of the arbitrary Jordan structure of A, it is not convenient to split off the entire invariant
subspace corresponding to the eigenvalue λk of Ak at one iteration. The subspace has
nontrivial internal structure; it is “too big” in a sense.

It is possible to split off a subspace of kerAk, i.e., a subspace of the invariant space in
the Jordan case. Each eigenvalue will be exhausted in several steps. The number of the
steps is equal to the size of the maximal Jordan block corresponding to the eigenvalue.
The coordinate functions will be obtained by projections in the same way as in the
diagonalizable case.

However, we shall not consider the case of general Jordan matrices in this paper. This
requires a detailed analysis of the structure defined in the space by the general linear
transformation, but the idea of the method remains the same. The corresponding projec-
tions that describe the positions of the kernel and the image are canonically conjugated.
Their common level set is isomorphic to the orbit of smaller dimension, and the restric-
tion of ωO to this level set coincides with the canonical symplectic form of this smaller
orbit.

§1. Main construction

Now we describe one iteration k → k + 1 in detail. We start from the transformation
rAk that is a result of the preceding iteration. We subtract (λk − λk−1)I in order to get
Ak such that dimkerAk = nk. To reduce the number of indices, we omit the indices “k”
and “k + 1”. This can be done without ambiguity, because all objects supplied by the
tilde should have index “k + 1” and no one object with index “k” has a tilde.

Consider A : V → V , and let J be the corresponding normal Jordan form. Let kerA
be the kernel, and let n be its dimension: dimkerA =: n ∈ N. By Restriction 1, the
space V is the direct sum

V = kerA⊕ imA =: K ⊕M,
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where M is the image of A. Obviously, in this case, a linear transformation can be
given by the position of the image, the position of the kernel, and the action of the
transformation on the image.

We emphasize that we deal with the case of the absence of generalized eigenvectors,
which are the vectors from the intersection of the image and the kernel.

Proposition 1. The normal Jordan form of the restriction of a diagonalizable transfor-
mation to its image is the diagonal matrix obtained by crossing out the zero rows and the
zero columns from the normal Jordan form of the initial transformation.

The image and the kernel of A are subspaces of V . Their dimensions are m and n,
respectively, so that they are points of the Grassmanians G(n, V ) and G(m,V ). Since
m + n = dimV , the Grassmanians are isomorphic. The image and the kernel of A are
an arbitrary pair of spaces of the given dimensions and transversal to each other. The
map OJ → G(n, V )×G(m,V ) is well defined. Its image is a Zariski open submanifold

(G(n, V )×G(m,V ))Δ := (G(n, V )×G(m,V )) \Δ,

where Δ stands for a pair (K, M) such that K ∩M 
= 0.

We map the orbit OJ to (G(n, V )×G(m,V ))Δ ×O
rJ , where

rJ is the diagonal matrix
obtained by crossing out the zero rows and columns from J . It is the orbit that contains
the restriction of A to its image:

(2) A → (kerA, imA, rA), where rA = A
∣∣
imA

.

Proposition 2. This map is a bijection.

The map itself and the inverse map are well defined because the kernel and the image

are arbitrary. The action on the image is an arbitrary rA belonging to the orbit O
rJ . �

In order to introduce coordinates, we split the basis vectors (e1, e2, . . . , eN ) of V
into two families. The first family is (e) = (en+1, en+2, . . . , en+m) and the second is
(f) = (e1, e2, . . . , en):

(e1, e2, . . . , eN ) = ((f), (e)).

Let rV denote the linear envelope of (e) and F the linear envelope of (f). Consider the
open set eOJ that consists of all maps with the property that no nonzero vector in kerA

belongs to rV . Let eG(n, V ) consist of all n-dimensional subspaces transversal to rV . The
set eG(n, V ) is an open subset of G(n, V ). Let e(G(n, V )×G(m,V ))Δ consist of the
couples

(K,M) ∈ (G(n, V )×G(m,V ))Δ
such that K ∩ E = 0.

Proposition 3. The restriction of the map (2) to eOJ is a bijection onto

e(G(n, V )×G(m,V ))Δ ×O
rJ .

We have reduced the domain and the target of the bijection (2) in a consistent
way. �

Since the spaces kerA and rV have complementary dimensions and are transversal to

each other, the projection to rV along kerA is well defined. We denote this projection by
ρ‖ker:

ρ‖ker : V → rV .

The subspace imA is also transversal to kerA and also has complementary dimension,
so that the projection along the kernel sets an isomorphism

(ρ‖ker)
∣∣
imA

: imA
∼→ rV .
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This isomorphism induces an isomorphism between the sets of linear automorphisms

of the spaces imA and rV . Since these automorphisms have the same matrices in the
corresponding bases, an isomorphism between subspaces preserves the Jordan forms of
the automorphisms.

Remark 1. The normal Jordan form of the restriction of the diagonalizable transforma-

tion rA to its image is obtained from the normal Jordan form of A by crossing out the

zero rows and columns. So we have set a diagonalizable transformation of the space rV
of dimension smaller than that of V . The Jordan form of the transformation is fixed; in
other words, it belongs to the orbit of a smaller dimension. If we reduce the problem of
parametrization of the given orbit to parametrization of this smaller orbit, we shall solve
the problem announced in the title.

Now we describe the coordinate submanifolds (the level surfaces) of the system of
coordinate functions to be constructed.

The splitting of V into the direct sum of the subspaces F and rV determines two

projections. The first is π‖F : V → rV parallel to F . The second is π‖ rV : V → F

parallel to rV . A linear isomorphism (π‖ rV
∣∣
kerA

)−1 : kerA → F that is the projection of

the kernel of A to the coordinate subspace F parallel to rV is well defined because kerA

is transversal to rV .
We define the mappings

Q : F → rV , Q := π‖F (π‖ rV
∣∣
kerA

)−1,

P : rV → F, P := π‖ rV A
∣∣

rV
.

Denote by rA the transformation of rV in question, i.e., the restriction of A to its image,
transported by (ρ‖ker)

∣∣
imA

:

rA : rV → rV , rA := ρ‖kerA
∣∣

rV
.

The coordinate surfaces are the level sets of the mappings P ∈ Hom(rV , F ), rA ∈ O
rJ ⊂

End(rV , rV ).
We denote the resulting map by π:

(3) π : eOJ → Hom(F, rV )×Hom(rV , F )×O
rJ .

Theorem 1. The map π is birational and bijective.

We have used rational operations only: the calculation of a root space and the image,
restriction to a subspace, projection, and inversion of linear transformations.

The transformation π is bijective. This follows from Propositions 2, 3 and the fact
that P and Q determine the kernel and the image of A uniquely. �

It will follow from Theorem 3 that the tangent space to the orbit at the point A ∈ eOJ

is the direct sum of the three spaces tangent to the coordinate surfaces in question. We

denote these surfaces by Q
∣∣P(A)=const

rA=const

, P
∣∣Q(A)=const

rA=const

, and rO
∣∣P(A)=const
Q(A)=const

:

TAOJ = TAQ
∣∣P(A)=const

rA=const

⊕ TA P
∣∣Q(A)=const

rA=const

⊕ TA rO
∣∣P(A)=const
Q(A)=const

.

Theorem 2. The spaces TA Q
∣∣P(A)=const

rA=const

and TA P
∣∣Q(A)=const

rA=const

are isotropic and orthog-

onal to TA rO
∣∣P(A)=const
Q(A)=const

with respect to the symplectic structure ωO on the orbit (see

formula (1)).
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In other words, if the tangent vectors ξi ∈ TAO, i = 1, 2, are written as ξi = i∂Q +

i∂P + i∂ rO, where

i∂Q ∈ TAQ
∣∣P(A)=const

rA=const

, i∂P ∈ TA P
∣∣Q(A)=const

rA=const

, i∂ rO ∈ TA rO
∣∣P(A)=const
Q(A)=const

,

then

0 = ωO(1∂Q, 2∂Q) = ωO(1∂P , 2∂P ) = ωO(i∂P , j∂ rO) = ωO(i∂Q, j∂ rO), i, j ∈ {1, 2}.

We shall write our N ×N matrices as the block 2× 2 matrices in accordance with the
splitting of the basis into two groups ((f), (e)). The matrix A can be uniquely represented
in the form

A =

(
1 0
Q 1

)(
0 P

0 rA

)(
1 0

−Q 1

)
provided kerA does not intersect the envelope of (e). In the above formula, Q is an m×n

matrix, P is of size n×m, rA is of size m×m, and 1, 0 are the unit and the zero matrix
of the due dimensions.

Restriction 1 implies that the entire root space of A is the envelope of the first n

columns of
(

1 0
Q 1.

)
Consequently, rA is nonsingular. Consider the n × m matrix qP :=

P rA−1; since (
1 qP
0 1

)(
0 0

0 rA

)(
1 − qP
0 1

)
=

(
0 P

0 rA

)
,

we have

A =

(
1 0
Q 1

)(
1 qP
0 1

)(
0 0

0 rA

)(
1 − qP
0 1

)(
1 0

−Q 1

)
.

• We calculate ωO(1∂Q, 2∂Q). For such vectors, P = const, and rA = const, so that

i∂Q =
d

dt

∣∣∣
t=0

(
1 0

Qi(t) 1

)(
0 P

0 rA

)(
1 0

−Qi(t) 1

)
=

[(
0 0

Q̇i 0

)
, A

]
,

whence

ωO(1∂Q, 2∂Q) = tr

(
0 0

Q̇1 0

)[(
0 0

Q̇2 0

)
, A

]
= 0.

• We calculate ωO(1∂P , 2∂P ). For such vectors, rA = const and Q = const.

The tangent vectors 1∂P and 2∂P are defined as the velocity vectors
(
0 Pi(t)

0 rA

)
trans-

formed by the similarity transformation with the matrix
(

1 0
Q 1

)
. After taking the trace,

the transformation
(

1 0
Q 1

)
disappears, and we can put Q = 0 and rA = const:

i∂P =
d

dt

∣∣∣
t=0

(
0 Pi(t)

0 rA

)
=

(
0 Ṗi

0 0

)

=
d

dt

∣∣∣
t=0

(
1 qPi(t)
0 1

)(
0 0

0 rA

)(
1 − qPi(t)
0 1

)
=

[(
0 q̇Pi

0 0

)(
0 0

0 rA

)]
.

Consequently,

ωO(1∂P , 2∂P ) = tr

(
0 q̇P1

0 0

)(
0 Ṗ2

0 0

)
= 0.



ON RATIONAL SYMPLECTIC PARAMETRIZATION 353

• We calculate ωO(∂Q, ∂ rO):

∂Q =
d

dt

∣∣∣
t=0

(
1 0

Q(t) 1

)(
0 P

0 rA

)(
1 0

−Q(t) 1

)
=

[(
0 0

Q̇ 0

)
, A

]
,

∂
rO =

(
1 0
Q 1

)(
0 0

0 Ă̇A

)(
1 0

−Q 1

)
,

ωO(∂Q, ∂ rO) = tr

(
0 0

Q̇ 0

)(
1 0
Q 1

)(
0 0

0 Ă̇A

)(
1 0

−Q 1

)

= tr

(
0 0

Q̇ 0

)(
0 0

0 Ă̇A

)
= 0.

• Finally, we calculate ωO(∂P , ∂ rO). As above, we can put Q = 0:

∂P =
d

dt

∣∣∣ t=0
rA=const

(
1 P (t) rA−1

0 1

)(
0 0

0 rA

)(
1 −P (t) rA−1

0 1

)

=

[(
0 Ṗ rA−1

0 0

)
, A

]
, ∂

rO =

(
0 0

0 Ă̇A

)
,

ωO(∂P , ∂ rO) = tr

(
0 Ṗ rA−1

0 0

)(
0 0

0 Ă̇A

)
= 0. �

Theorem 3. The restriction of ωO from the orbit OJ to the submanifold rO
∣∣P(A)=const
Q(A)=const

�

O
rJ coincides with the form ω

rO defined on the orbit O
rJ .

Let

∂i =
d

dt

∣∣∣
t=0

(
1 0
Q 1

)(
0 P

0 rAi(t)

)(
1 0

−Q 1

)
,

and let rAi(t) = gi(t) rJ g−1
i (t). Then Ă̇Ai =

[
rUi, rA

]
, where rUi := ġig

−1. Note that we can

put Q = 0 again. We have

d

dt

∣∣∣
t=0

(
1 P rA−1

i (t)
0 1

)(
0 0

0 rAi(t)

)(
1 −P rA−1

i (t)
0 1

)

=
d

dt

∣∣∣
t=0

(
1 P rA−1

i (t)
0 1

)(
1 0
0 gi(t)

)(
0 0

0 rA(t)

)(
1 0
0 g−1

i (t)

)(
1 −P rA−1(t)
0 1

)

=

[(
d

dt

∣∣∣
t=0

((
1 P rA−1

i (t)
0 1

)(
1 0
0 gi(t)

)))(
1 0
0 g−1

)(
1 −P rA−1

0 1

)
, A

]
.

The matrices Ui : Ȧi = [Ui, A] are represented as follows:

Ui =

(
1 P rA−1

0 1

)(
0 0

0 rUi

)(
1 −P rA−1

0 1

)
+

(
0 P Ă̇A−1

i

0 0

)

=

(
0 P rA−1

rUi

0 rUi

)
+

(
0 P Ă̇A−1

i

0 0

)
.
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Finally,

ωO(∂1, ∂2) = tr

((
0 P rA−1

rU1

0 rU1

)
+

(
0 P Ă̇A−1

1

0 0

))(
0 0

0 Ă̇A2

)

= tr rU1
Ă̇A2 = ω

rO(∂1, ∂2).

§2. Lie–Poisson bracket

So far we have avoided using explicit coordinates in calculations, trying to explain our
general point in the language of symplectic geometry. To give a complete picture, here
we adduce the calculation of the Lie–Poisson bracket by using explicit coordinates.

We recall the general construction of the Lie–Poisson bracket. A canonical Lie–Poisson
bracket exists on the space g∗ dual to the Lie algebra g. The linear functions X1, X2 on
g∗ are elements of the Lie algebra itself: Xk(A) = 〈A,Xk〉. The bracket is defined by
the formula

{X1, X2}(A) = 〈A, [X1, X2]〉 ; X1, X2 ∈ g, A ∈ g∗.

The Leibniz identity shows that the bracket extends from the set of linear functions
to the set of arbitrary smooth functions ϕk ∈ C∞(g∗) in such a way that the general
formula reads

{ϕ1, ϕ2}(A) = 〈A, [dϕ1, dϕ2]〉.
We rewrite the general formula in coordinates. For this, we select a basis ek in the Lie
algebra g and a dual basis ek in g∗:

[ej, ek] =
∑
i

Ci
jkei ; 〈ek, ei〉 = δki ,

where k enumerates the elements of the basis and the Ci
jk are structure constants of the

Lie algebra g. An arbitrary element A ∈ g∗ can be written as A =
∑

k Ake
k, so that the

coordinates of A are the Ak, and “the decoding” of the general formula in coordinates
looks like this:

{ϕ1, ϕ2}(A) =
∑
ijk

Ci
jkAi ·

∂ϕ1

∂Aj

∂ϕ2

∂Ak
.

We identify the Lie algebra gl(N,C) and its dual gl∗(N,C) again. In the Lie algebra
gl(N,C), a standard basis consists of the matrix units eij : A =

∑
ij Aijeij , so that the

pair ij plays the role of k . The only nonzero entry equal to unity in the matrix eij
is located at the intersection of the ith line and the jth column. Thus, the coordinate
functions Aij are entries of the matrix A. The structure constants of the Lie algebra
gl(N,C) can easily be found from the defining commutation relations

[eik, enm] = δkneim − δimenk.

We get a formula for the Lie–Poisson bracket of smooth functions ϕk(A):

{ϕ1, ϕ2}(A) = Aim · ∂ϕ1

∂Aip

∂ϕ2

∂Apm
−Ank · ∂ϕ1

∂Apk

∂ϕ2

∂Anp
,

where the summation is meant over all repeated indices. The bracket of coordinate
functions reproduces the commutation relations of the initial Lie algebra,

(4) {Aik, Anm} = δknAim − δimAnk.

The points of the orbit OJ 
 J are matrices of the form

A = g J g−1, g ∈ GL(N,C).
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We need to find coordinate functions pk, qk on the orbit that are birational with respect
to Aij and canonically conjugated with respect to the Lie–Poisson bracket

{qi, qk} = {pi, pk} = 0, {pi, qk} = δik.

For simplicity, we shall confine ourselves to the case of general position, where all the
eigenvalues of J = diag(λ1, . . . , λN ) are different. Consider the first step of the itera-
tive process of selection of canonical coordinates on the orbit. For almost any matrix
g ∈ GL(N,C), the matrix A belonging to the orbit can be presented as a product of the
following triangular matrices:

A =

(
1 0
Q 1

)(
λ1 P

0 rA

)(
1 0

−Q 1

)
,

where

(
1 0
Q 1

)
=

⎛
⎜⎜⎜⎝

1 0 . . . 0
q2 1 . . . 0
...

...
. . .

...
qN 0 . . . 1

⎞
⎟⎟⎟⎠ ,

(
λ1 P

0 rA

)
=

⎛
⎜⎜⎜⎝
λ1 p2 . . . pN
0 rA22 . . . rA2N

...
...

. . .
...

0 rAN2 . . . rANN

⎞
⎟⎟⎟⎠ ,

and the matrix rA lies on the orbit of smaller dimension:

rA = rg rJ rg−1, rg ∈ SL(N − 1,C), rJ = diag(λ2, . . . , λN ).

Thus, the matrix entries of A can be expressed via those of rA and the set of coordinates
qk, pk:

A11 = λ1 − qkpk , A1k = pk ,

Ak1 = qk (λ1 − qipi)− rAkiqi , Aik = rAik + qipk ,

where i, k = 2, . . . , N and repeated indices imply summation. If we require that the

entries of rA commute with the variables qk, pk, { rAik, qj} = { rAik, pj} = 0, then the
entries of A will satisfy relations (4) if

{qi, qk} = {pi, pk} = 0, {pi, qk} = δik,

{ rAik, rAnm} = δkn rAim − δim rAnk.

Thus, after the first step of our iterative procedure, we naturally obtain the set of
N − 1 pairs of canonical coordinates qk, pk, and the problem reduces to the construction
of canonical coordinates on the orbit of smaller dimension. We can continue the iterative
procedure, getting finally (N − 1) + (N − 2) + · · · + 1 = N(N−1)

2 pairs of canonical
coordinates on the orbit in general position. As an example, consider the formulas for
N = 2, 3:

A =

(
1 0
q 1

)(
λ1 p
0 λ2

)(
1 0
−q 1

)
,

A =

⎛
⎝ 1 0 0
q2 1 0
q3 q1 1

⎞
⎠

⎛
⎝λ1 p2 + p3 q1 p3

0 λ2 p1
0 0 λ3

⎞
⎠

⎛
⎝ 1 0 0
q2 1 0
q3 q1 1

⎞
⎠

−1

.

General formulas can be derived easily; they are similar to those for the generators of the
representation of the basic series for the group GL(N,C), which were obtained in [11]
on the basis of the method of [12]. Note that everything can easily be generalized to
the case of the multiple eigenvalues λk [12]. In all formulas, the matrix entries can be
rectangular matrices; it is only necessary to keep their correct order in products.
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For example, in the first formula, let λ1 have multiplicity n1 and λ2 multiplicity n2.
Then A is a matrix of size (n1 + n2) × (n1 + n2), q is a block of size n2 × n1, and p is
a block of size n1 × n2. In the second formula, let λk have multiplicity nk. Then A is a
matrix of size (n1+n2+n3)× (n1+n2+n3), the block q1 is of size n3×n2, the block p1
is of size n2 × n3, the block q2 has size n2 × n1, the block p2 has size n1 × n2, the block
q3 has size n3 × n1, and block p3 has size n1 × n3.

The inverse mapping, i.e., the formulas pi = pi(A), qi = qi(A) can be obtained by the
successive finding of eigenvectors corresponding to the initially specified eigenvalues for
smaller and smaller matrices. Obviously, this is a rational operation.

The canonical parametrization of the coadjoint orbit is a well-known problem. Among
many publications, the papers [13, 14], and [15] should be mentioned. The method
introduced here is closer to the methods of [16] and [17].

The papers [14] and [15] also present explicit formulas for the parametrization, but
they employ other coordinates. An important property of our coordinates is rationality.
To find pk, qk we need to solve systems of linear equations only. The coefficients of the
equations are rational functions of the matrix entries Ai,j . The methods of [14] and [15]
give rational formulas for some polynomials of degree N − 1. The canonical coordinates
are the roots of these polynomials. Thus, starting with the case of 3 × 3-matrices, the
coordinates are different. Finally, we notice that in our method the dimensions of the
eigenspaces of A are arbitrary, but the methods of [14] and [15] are applicable in the case
of one-dimensional eigenspaces only.
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