Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

The correlation functions of the $ XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers


Authors: N. M. Bogoliubov and C. Malyshev
Translated by: the authors
Original publication: Algebra i Analiz, tom 22 (2010), nomer 3.
Journal: St. Petersburg Math. J. 22 (2011), 359-377
MSC (2010): Primary 81U40
DOI: https://doi.org/10.1090/S1061-0022-2011-01146-X
Published electronically: March 17, 2011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ XXZ$ Heisenberg chain is considered for two specific limits of the anisotropy parameter: $ \Delta\to 0$ and $ \Delta\to -\infty$. The corresponding wave functions are expressed in terms of symmetric Schur functions. Certain expectation values and thermal correlation functions of the ferromagnetic string operators are calculated over the basis of $ N$-particle Bethe states. The thermal correlator of the ferromagnetic string is expressed through the generating function of the lattice paths of random walks of vicious walkers. A relationship between the expectation values obtained and the generating functions of strict plane partitions in a box is discussed. An asymptotic estimate of the thermal correlator of the ferromagnetic string is obtained in the zero temperature limit. It is shown that its amplitude is related to the number of plane partitions.


References [Enhancements On Off] (What's this?)

  • 1. W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. 49 (1928), no. 9-10, 619-636.
  • 2. H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen Atomkette, Z. Phys. 71 (1931), no. 3-4, 205-226.
  • 3. C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system, Phys. Rev. 150 (1966), no. 1, 321-327.
  • 4. -, One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground state energy per lattice site for an infinite system, Phys. Rev. 150 (1966), no. 1, 327-339.
  • 5. -, One-dimensional chain of anisotropic spin-spin interactions. III. Applications, Phys. Rev. 151 (1966), no. 1, 258-264.
  • 6. E. H. Lieb and F. Y. Wu, Two dimensional ferroelectric models, Phase Transitions and Critical Phenomena. Vol. 1 (C. Domb, M. Green, eds.), Acad. Press, London, 1972, pp. 331-490.
  • 7. R. J. Baxter, Exactly solved models in statistical mechanics, Acad. Press, London, 1982. MR 0690578 (86i:82002a)
  • 8. M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983. MR 0693905 (85h:82001)
  • 9. L. D. Faddeev, Quantum completely integrable models of field theory, Mathematical Physics Reviews. Vol. 1, Sov. Sci. Rev. Sect. C: Math. Phys. Rev., vol. 1, Harwood Acad. Publ., Chur, 1980, pp. 107-155; 40 years in mathematical physics, World Sci. Ser. 20th Century Math., vol. 2, World Sci., Singapore, 1995, pp. 187-235. MR 0659260 (83e: 81002a); MR 1372058 (97c: 01048)
  • 10. P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, Lecture Notes in Phys., vol. 151, Springer, Berlin, 1982, pp. 61-119. MR 0671263 (84m:81114)
  • 11. L. D. Faddeev and L. A. Takhtadzhyan, The quantum method for the inverse problem and the $ XYZ$ Heisenberg model, Uspekhi Mat. Nauk 34 (1979), no. 5, 13-63. (Russian) MR 0562799 (81d:82066)
  • 12. -, What is the spin of a spin wave? Phys. Lett. A 85 (1981), no. 6-7, 375-377. MR 0632380 (83b:82017)
  • 13. V. E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), no. 3, 391-418. MR 0677006 (83m:81078)
  • 14. A. G. Izergin and V. E. Korepin, Correlation functions for the Heisenberg $ XXZ$-antiferromagnet, Comm. Math. Phys. 99 (1985), no. 2, 271-302. MR 0790738 (86m:82021)
  • 15. P. P. Kulish and F. A. Smirnov, Anisotropic Heisenberg ferromagnet with a ground of the domain wall type, J. Phys. C 18 (1985), no. 5, 1037-1048.
  • 16. N. M. Bogolyubov, A. G. Izergin, and V. E. Korepin, Correlation functions of integrable systems and the quantum inverse problem method, Nauka, Moscow, 1992. (Russian) MR 1225798 (95j:81240)
  • 17. -, Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993. MR 1245942 (95b:81224)
  • 18. F. H. L. Eßler, H. Frahm, A. G. Izergin, and V. E. Korepin, Determinant representation for correlation functions of spin-1/2 $ XXX$ and $ XXZ$ Heisenberg magnets, Comm. Math. Phys. 174 (1995), no. 1, 191-214. MR 1372806 (96j:82013)
  • 19. N. Kitanine, J. M. Maillet, N. Slavnov, and V. Terras, Spin-spin correlation functions of the $ XXZ$-$ \frac12$ Heisenberg chain in a magnetic field, Nuclear Phys. B 641 (2002), no. 3, 487-518. MR 1931297 (2003h:82033)
  • 20. -, Correlation functions of the $ XXZ$ spin-$ \frac12$ Heisenberg chain at the free fermion point from their multiple integral representations, Nuclear Phys. B 642 (2002), no. 3, 433-455. MR 1932594 (2003h:82022)
  • 21. M. E. Fisher, Walks, walls, wetting, and melting, J. Statist. Phys. 34 (1984), no. 5-6, 667-729. MR 0751710 (85j:82022)
  • 22. P. J. Forrester, Exact solution of the lock step model of vicious walkers, J. Phys. A 23 (1990), no. 7, 1259-1273. MR 1049530 (91d:82019)
  • 23. T. Nagao and P. J. Forrester, Vicious random walkers and a discretization of Gaussian random matrix ensembles, Nuclear Phys. B 620 (2002), no. 3, 551-565. MR 1877962 (2002j:82056)
  • 24. A. J. Guttmann, A. L. Owczarek, and X. G. Viennot, Vicious walkers and Young tableaux. I. Without walls, J. Phys. A 31 (1998), no. 40, 8123-8135. MR 1651492 (99j:82042)
  • 25. C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux. II. With a wall, J. Phys. A 33 (2000), no. 48, 8835-8866. MR 1801472 (2001m:82041)
  • 26. -, Vicious walkers, friendly walkers, and Young tableaux. III. Between two walls, J. Statist. Phys. 110 (2003), no. 3-6, 1069-1086. MR 1964695 (2004e:82027)
  • 27. M. Katori and H. Tanemura, Scaling limit of vicious walks and two-matrix model, Phys. Rev. E 66 (2002), no. 1, 011105 [12 pages].
  • 28. M. Katori, H. Tanemura, T. Nagao, and N. Komatsuda, Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov-de Gennes random matrices, Phys. Rev. E 68 (2003), no. 2, 021112 [16 pages].
  • 29. M. Katori and H. Tanemura, Nonintersecting paths, noncolliding diffusion processes and representation theory, Combinatorial Methods in Representation Theory and their Applications, RIMS Kokyuroku, 1438 (2005), 83-102.
  • 30. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38 (1998), no. 1, 364-374. MR 949160 (89g:58126)
  • 31. D. Huse and M. Fisher, Commensurate melting, domain walls, and dislocations, Phys. Rev. B (3) 29 (1984), no. 1, 239-270. MR 0729979 (85e:82025)
  • 32. J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Phys. Rev. E (3) 52 (1995), no. 6, 5849-5862. MR 1384738 (97b:82049)
  • 33. S. Yu. Grigor'ev and V. B. Priezzhev, Random walks of annihilating particles on a ring, Teoret. Mat. Fiz. 146 (2006), no. 3, 488-498; English transl., Theoret. and Math. Phys. 146 (2006), no. 3, 411-420. MR 2254671 (2007d:82036)
  • 34. J. W. van de Leur and A. Yu. Orlov, Random turn walk on a half line with creation of particles at the origin, arXiv:0801.0066
  • 35. N. M. Bogolyubov, The $ XXO$ Heisenberg chain and random walks, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325 (2005), 13-27; English transl., J. Math. Sci. (N. Y.) 138 (2006), no. 3, 5636-5643. MR 2160317 (2006e:82008)
  • 36. -, Integrable models for vicious and friendly walkers, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 335 (2006), 59-74; English transl., J. Math. Sci. (N. Y.) 143 (2007), no. 1, 2729-2737. MR 2269751 (2007i:82025)
  • 37. N. M. Bogoliubov and C. Malyshev, A path-integration approach to the correlators of $ XY$ Heisenberg magnet and random walks, Path Integrals, World Sci. Publ., Singapore, 2008, pp. 508-513; arXiv:0810.4816. MR 2503741 (2010d:82017)
  • 38. -, Correlation function of the $ XX$ Heisenberg magnet, and random walks of vicious walkers, Teoret. Mat. Fiz. 159 (2009), no. 2, 179-193; English transl. in Theoret. and Math. Phys. 159 (2009). MR 2567335 (2010j:82017)
  • 39. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Physics 16 (1961), no. 3, 407-466. MR 0136392 (24:B2430)
  • 40. Th. Niemeijer, Some exact calculations on a chain of spin $ \frac12$. I, II, Physica 36 (1967), no. 3, 377-419; 39 (1968), no. 3, 313-326.
  • 41. F. Colomo, A. G. Izergin, V. E. Korepin, and V. Tognetti, Correlators in the Heisenberg $ XXO$ chain as Fredholm determinants, Phys. Lett. A 169 (1992), no. 4, 243-247. MR 1182521 (93f:82020) F. Colomo, A. G. Izergin, V. E. Korepin, and V. Tognetti, Temperature correlation functions in the $ XXO$ Heisenberg chain. I, Teoret. Mat. Fiz. 94 (1993), no. 1, 19-51; English transl., Theoret. and Math. Phys. 94 (1993), no. 1, 11-38. MR 1226428 (95b:82003)
  • 42. A. G. Izergin, N. A. Kitanin, and N. A. Slavnov, On correlation functions of the $ XY$ model, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 224 (1995), 178-191; English transl., J. Math. Sci. (N.Y.) 88 (1998), no. 2, 224-232. MR 1364849 (97k:82011)
  • 43. A. G. Izergin, V. S. Kapitonov, and N. A. Kitanin, Simultaneous temperature correlators of the one-dimensional Heisenberg $ XY$ chain, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 245 (1997), 173-206; English transl., J. Math. Sci. (N.Y.) 100 (2000), no. 2, 2120-2140. MR 1627784 (99f:82011)
  • 44. V. S. Kapitonov and A. G. Pron'ko, Time-dependent correlators of local spins in the one-dimensional Heisenberg $ XY$-chain, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000), 219-261; English transl., J. Math. Sci. (N.Y.) 115 (2003), no. 1, 2009-2032. MR 1805863 (2002a:82026)
  • 45. K. Malyshev, Functional integration with an ``automorphic'' boundary condition, and correlators of the third spin components in the $ XX$ Heisenberg model, Teoret. Mat. Fiz. 136 (2003), no. 2, 285-298; English transl., Theoret. and Math. Phys. 136 (2003), no. 2, 1143-1154. MR 2025377 (2004k:82020)
  • 46. -, Functional integration with ``automorphic'' boundary conditions and correlators of $ Z$-components of spins in the $ XY$ and $ XX$ Heisenberg chains, New Developments in Mathematical Physics Research, Nova Sci. Publ., Hauppauge, 2004, pp. 85-116; arXiv:math-ph/0405009 MR 2076275 (2005e:82011)
  • 47. S. Sachdev, Quantum phase transitions, Cambridge Univ. Press, Cambridge, 1999. MR 1785382 (2002h:82035)
  • 48. F. Colomo, A. G. Izergin, and V. Tognetti, Correlation functions in the $ XXO$ Heisenberg chain and their relations with spectral shapes, J. Phys. A 30 (1997), no. 2, 361-370. MR 1442868 (98f:82017)
  • 49. V. Korepin and J. Terilla, Thermodynamic interpretation of the quantum error correcting criterion, Quantum Inf. Process. 1 (2002), no. 4, 225-242. MR 1964347 (2005a:94039)
  • 50. B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture, J. Statist. Phys. 116 (2004), no. 1-4, 79-95. MR 2083138 (2005e:82015)
  • 51. F. C. Alcaraz and R. Z. Bariev, An exactly solvable constrained $ XXZ$ chain, Statistical Physics on the Eve of the 21st Century, Ser. Adv. Statist. Mech., vol. 14, World Sci. Publ., Singapore, 1999; arXiv:cond-mat/9904042 MR 1704014 (2000c:82026)
  • 52. N. I. Abarenkova and A. G. Pron'ko, The temperature correlator in the absolutely anisotropic Heisenberg $ XXZ$-magnet, Teoret. Mat. Fiz. 131 (2002), no. 2, 288-303; English transl., Theoret. and Math. Phys. 131 (2002), no. 2, 690-703. MR 1932255 (2003g:82013)
  • 53. A. J. A. James, W. D. Goetze, and F. H. L. Essler, Finite-temperature dynamical structure factor of the Heisenberg-Ising chain, Phys. Rev. B 79 (2009), no. 21, 214408 [20 pages].
  • 54. P. Lu, G. Muller, and M. Karbach, Quasiparticles in the $ XXZ$ model, arXiv:0909.2728
  • 55. I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, New York, 1995. MR 1354144 (96h:05207)
  • 56. F. R. Gantmacher, Theory of matrices, Nauka, Moscow, 1988; English transl. of 1st ed., Chelsea Publ. Co., New York, 1959. MR 0986246 (90a:15001); MR 0107649 (21:6372c)
  • 57. D. P. Zhelobenko and A. I. Shtern, Representations of Lie groups, Nauka, Moscow, 1983; English transl., Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach Sci. Publ., New York, 1990. MR 0709598 (85g:22001); MR 1104272 (91m:22001)
  • 58. M. L. Mehta, Random matrices, Acad. Press, Inc., Boston, MA, 1991. MR 1083764 (92f:82002)
  • 59. A. Okounkov, Infinite wedge and random partitions, Selecta Math. (N. S.) 7 (2001), no. 1, 57-81. MR 1856553 (2002f:60019)
  • 60. G. Kuperberg, Another proof of the alternative-sign matrix conjecture, Int. Math. Res. Notices 1996, no. 3, 139-150. MR 1383754 (97c:05009)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 81U40

Retrieve articles in all journals with MSC (2010): 81U40


Additional Information

N. M. Bogoliubov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, 27 Fontanka, St. Petersburg 191023, Russia
Email: bogoliub@pdmi.ras.ru

C. Malyshev
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, 27 Fontanka, St. Petersburg 191023, Russia
Email: malyshev@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-2011-01146-X
Keywords: XXZ Heisenberg chain, Schur functions, random walks, plane partitions
Received by editor(s): February 19, 2010
Published electronically: March 17, 2011
Additional Notes: Extended talk at the Conference “Conformal Field Theory, Integrable Systems, and Liouville Gravity” (Chernogolovka, June 30–July 2, 2009).
Partially supported by RFBR (No. 07-01-00358) and by the Russian Academy of Sciences program “Mathematical Methods in Nonlinear Dynamics”
Dedicated: Dedicated to L. D. Faddeev
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society