Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quantum Toda chains intertwined
HTML articles powered by AMS MathViewer

by A. Gerasimov, D. Lebedev and S. Oblezin
St. Petersburg Math. J. 22 (2011), 411-435
DOI: https://doi.org/10.1090/S1061-0022-2011-01149-5
Published electronically: March 17, 2011

Abstract:

An explicit construction of integral operators intertwining various quantum Toda chains is conjectured. Compositions of the intertwining operators provide recursive and $\mathcal {Q}$-operators for quantum Toda chains. In particular the authors’ earlier results on Toda chains corresponding to classical Lie algebras are extended to the generic $BC_n$- and Inozemtsev–Toda chains. Also, an explicit form of $\mathcal {Q}$-operators is conjectured for the closed Toda chains corresponding to the Lie algebras $B_{\infty }$, $C_{\infty }$, $D_{\infty }$, the affine Lie algebras $B^{(1)}_n$, $C^{(1)}_n$, $D^{(1)}_n$, $D^{(2)}_n$, $A^{(2)}_{2n-1}$, $A^{(2)}_{2n}$, and the affine analogs of $BC_n$- and Inozemtsev–Toda chains.
References
  • L. D. Faddeev, How the algebraic Bethe ansatz works for integrable models, SymĂ©tries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 149–219. MR 1616371
  • A. Gerasimov, S. Kharchev, D. Lebedev, and S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Not. , posted on (2006), Art. ID 96489, 23. MR 2219213, DOI 10.1155/IMRN/2006/96489
  • A. Gerasimov, D. Lebedev, and S. Oblezin, Givental integral representation for classical groups, arXiv:math. RT/ 0608152.
  • —, New integral representations of Whittaker functions for classical groups, math.RT/ 0705.2886.
  • A. Gerasimov, D. Lebedev, and S. Oblezin, Baxter operator and Archimedean Hecke algebra, Comm. Math. Phys. 284 (2008), no. 3, 867–896. MR 2452597, DOI 10.1007/s00220-008-0547-9
  • Alexander Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, vol. 180, Amer. Math. Soc., Providence, RI, 1997, pp. 103–115. MR 1767115, DOI 10.1090/trans2/180/07
  • Michihiko Hashizume, Whittaker functions on semisimple Lie groups, Hiroshima Math. J. 12 (1982), no. 2, 259–293. MR 665496
  • Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • V. I. Inozemtsev, The finite Toda lattices, Comm. Math. Phys. 121 (1989), no. 4, 629–638. MR 990995
  • Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
  • Vadim Kuznetsov and Evgeny Sklyanin, Bäcklund transformation for the BC-type Toda lattice, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 080, 17. MR 2366942, DOI 10.3842/SIGMA.2007.080
  • V. Pasquier and M. Gaudin, The periodic Toda chain and a matrix generalization of the Bessel function recursion relations, J. Phys. A 25 (1992), no. 20, 5243–5252. MR 1192958
  • A. G. ReÄ­man and M. A. Semenov-Tyan-ShanskiÄ­, Integrable systems. Group-theoretical approach, Inst. Kompyuter. Issled., Moscow–Izhevsk, 2003. (Russian)
  • E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), no. 10, 2375–2389. MR 953215
  • R. V. Gamkrelidze (ed.), Sovremennye problemy matematiki. Fundamental′nye napravleniya. Tom 16, Itogi Nauki i Tekhniki. [Progress in Science and Technology], Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987 (Russian). Dinamicheskie sistemy. 7. [Dynamical systems. 7]. MR 922069
  • Morikazu Toda, Theory of nonlinear lattices, Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin-New York, 1981. Translated from the Japanese by the author. MR 618652
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 81Q12
  • Retrieve articles in all journals with MSC (2010): 81Q12
Bibliographic Information
  • A. Gerasimov
  • Affiliation: Institute for Theoretical and Experimental Physics, Moscow 117259, Russia; School of Mathematics, Trinity College, Dublin 2, Ireland; and Hamilton Mathematics Institute, Trinity College, Dublin 2, Ireland
  • Email: anton@maths.tcd.ie
  • D. Lebedev
  • Affiliation: Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
  • Email: lebedev@itep.ru
  • S. Oblezin
  • Affiliation: Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
  • Email: Sergey.Oblezin@itep.ru
  • Received by editor(s): January 11, 2010
  • Published electronically: March 17, 2011
  • Additional Notes: Supported by RFBR (grant nos. 08-01-00931-a and 09-01-93108-NCNIL-a). A. Gerasimov was also partly supported by a grant from Science Foundation Ireland. S. Oblezin gratefully acknowledges the support from Deligne’s 2004 Balzan prize in mathematics

  • Dedicated: To Ludwig Dmitrievich Faddeev on the occasion of his 75th birthday \flushright The most convenient model for exploring such relationships is the Toda chain. L. D. Faddeev (Preprint LOMI, P-2-79) \endflushright
  • © Copyright 2011 American Mathematical Society
  • Journal: St. Petersburg Math. J. 22 (2011), 411-435
  • MSC (2010): Primary 81Q12
  • DOI: https://doi.org/10.1090/S1061-0022-2011-01149-5
  • MathSciNet review: 2729942