Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

On perturbations of the isometric semigroup of shifts on the semiaxis


Authors: G. G. Amosov, A. D. Baranov and V. V. Kapustin
Translated by: the authors
Original publication: Algebra i Analiz, tom 22 (2010), nomer 4.
Journal: St. Petersburg Math. J. 22 (2011), 515-528
MSC (2010): Primary 47D03, 47B37, 47B10
Published electronically: May 2, 2011
MathSciNet review: 2768959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Perturbations $ (\widetilde\tau_t)_{t\ge 0}$ of the semigroup of shifts $ (\tau_t)_{t\ge 0}$ on $ L^2(\mathbb{R}_+)$ are studied under the assumption that $ \widetilde\tau_t - \tau_t$ belongs to a certain Schatten-von Neumann class $ \mathfrak{S}_p$ with $ p\ge 1$. It is shown that, for the unitary component in the Wold-Kolmogorov decomposition of the cogenerator of the semigroup $ (\widetilde\tau_t)_{t\ge 0}$, any singular spectral type may be achieved by $ \mathfrak{S}_1$-perturbations. An explicit construction is provided for a perturbation with a given spectral type, based on the theory of model spaces of the Hardy space $ H^2$. Also, it is shown that an arbitrary prescribed spectral type may be obtained for the unitary component of the perturbed semigroup by a perturbation of class $ \mathfrak{S}_p$ with $ p>1$.


References [Enhancements On Off] (What's this?)

  • 1. G. G. Amosov and A. D. Baranov, On the dilation of contractive cocycles and cocycle perturbations of the translation group on the line, Mat. Zametki 79 (2006), no. 1, 3–18 (Russian, with Russian summary); English transl., Math. Notes 79 (2006), no. 1-2, 3–17. MR 2249142, 10.1007/s11006-006-0001-2
  • 2. G. G. Amosov and A. D. Baranov, On the dilation of contractive cocycles and cocycle perturbations of the translation group on the line. II, Mat. Zametki 79 (2006), no. 5, 779–780 (Russian); English transl., Math. Notes 79 (2006), no. 5-6, 719–720. MR 2249135, 10.1007/s11006-006-0081-z
  • 3. A. D. Baranov, Embeddings of model subspaces of the Hardy class: compactness and Schatten–von Neumann ideals, Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), no. 6, 3–28 (Russian, with Russian summary); English transl., Izv. Math. 73 (2009), no. 6, 1077–1100. MR 2640976, 10.1070/IM2009v073n06ABEH002473
  • 4. Kōsaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382
  • 5. Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • 6. N. K. Nikol′skiĭ, Lektsii ob operatore sdviga, “Nauka”, Moscow, 1980 (Russian). MR 575166
    N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223
  • 7. O. G. Parfënov, On the properties of embedding operators of some classes of analytic functions, Algebra i Analiz 3 (1991), no. 2, 199–222 (Russian); English transl., St. Petersburg Math. J. 3 (1992), no. 2, 425–446. MR 1137528
  • 8. O. G. Parfënov, Weighted estimates for the Fourier transform, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), no. Issled. po Linein. Oper. i Teor. Funktsii. 23, 151–162, 309 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 87 (1997), no. 5, 3878–3885. MR 1359997, 10.1007/BF02355829
  • 9. A. G. Poltoratskiĭ, Boundary behavior of pseudocontinuable functions, Algebra i Analiz 5 (1993), no. 2, 189–210 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 2, 389–406. MR 1223178
  • 10. Béla Sz.-Nagy and Ciprian Foiaș, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR 0275190
  • 11. Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
  • 12. D. R. Yafaev, Mathematical scattering theory, Translations of Mathematical Monographs, vol. 105, American Mathematical Society, Providence, RI, 1992. General theory; Translated from the Russian by J. R. Schulenberger. MR 1180965
  • 13. P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332–342. MR 0262511
  • 14. P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta Math. 124 (1970), 191–204. MR 0264385
  • 15. Grigori G. Amosov, Cocycle perturbation of quasifree algebraic 𝐾-flow leads to required asymptotic dynamics of associated completely positive semigroup, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 2, 237–246. MR 1812699, 10.1142/S0219025700000170
  • 16. G. G. Amosov and A. D. Baranov, On perturbations of the group of shifts on the line by unitary cocycles, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3269–3273 (electronic). MR 2073301, 10.1090/S0002-9939-04-07423-4
  • 17. William Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80 (1989), no. 409, iv+66. MR 987590, 10.1090/memo/0409
  • 18. Douglas N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191. MR 0301534
  • 19. E. B. Davies, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc. (2) 37 (1988), no. 1, 148–157. MR 921753, 10.1112/jlms/s2-37.121.148
  • 20. Vladimir Kapustin and Alexei Poltoratski, Boundary convergence of vector-valued pseudocontinuable functions, J. Funct. Anal. 238 (2006), no. 1, 313–326. MR 2253018, 10.1016/j.jfa.2006.04.006
  • 21. Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR 1864396
    Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002. Model operators and systems; Translated from the French by Andreas Hartmann and revised by the author. MR 1892647
  • 22. Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons, Inc., New York, 1994. A Wiley-Interscience Publication. MR 1289670

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 47D03, 47B37, 47B10

Retrieve articles in all journals with MSC (2010): 47D03, 47B37, 47B10


Additional Information

G. G. Amosov
Affiliation: Moscow Institute of Physics and Technology, Moscow, Russia
Email: gramos@mail.ru

A. D. Baranov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Stary Petergof, Bibliotechnaya Pl. 2, St. Petersburg 198504, Russia
Email: anton.d.baranov@gmail.com

V. V. Kapustin
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: kapustin@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-2011-01156-2
Keywords: Semigroup of shifts, trace-class perturbation, Schatten–von Neumann ideals, Hardy space, inner function.
Received by editor(s): January 20, 2010
Published electronically: May 2, 2011
Additional Notes: Partially supported by the Federal Program 2.1.1/1662, by RFBR (grant no. 08-01-00723), and by the President of Russian Federation grant no. NSH 2409.2008.1
Article copyright: © Copyright 2011 American Mathematical Society