Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Parametrization of a two-dimensional quasiperiodic Rauzy tiling
HTML articles powered by AMS MathViewer

by V. G. Zhuravlev
Translated by: B. Bekker
St. Petersburg Math. J. 22 (2011), 529-555
DOI: https://doi.org/10.1090/S1061-0022-2011-01157-4
Published electronically: May 2, 2011

Abstract:

With the help of an affine inflation $B$, a two-dimensional quasiperiodic Rauzy tiling $\mathcal {R}^\infty$ is constructed, together with a parametrization of its tiles by algebraic integers $\mathbb {Z}[\zeta ] \subset [0,1)$, where $\zeta$ is a certain Pisot number (specifically, the real root of the polynomial $x^3+x^2+x-1$). The coronas (clusters) of the tiling $\mathcal {R}^\infty$ are classified by disjoint half-intervals in $[0,1)$ the lengths of which are proportional to the frequencies of the corresponding corona types. It is proved that, for each of the three basis tiles, there exists an odd number of corona types of an arbitrary level. The parametrization obtained describes local rules (tile adjacency conditions) for $\mathcal {R}^\infty$, and it conjugates the action of the affine rotation $B$ of the plane $\mathbb {R}^2$ by an irrational angle with a shift of the coding sequences.
References
  • V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), no. Trudy po Teorii Chisel, 83–106, 253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4658–4672. MR 2138453, DOI 10.1007/s10958-006-0262-z
  • V. G. Zhuravlev, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89–122 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 2, 307–340. MR 2316983, DOI 10.1070/IM2007v071n02ABEH002358
  • V. G. Zhuravlev, On additivity property of the complexity function related to Rauzy tiling, Analytic and probabilistic methods in number theory/Analiziniai ir tikimybiniai metodai skaičių teorijoje, TEV, Vilnius, 2007, pp. 240–254. MR 2397156
  • V. G. Zhuravlev and A. V. Maleev, The complexity function and forsing in two-dimensional quasiperiodic Rauzy tiling, Kristallografiya 52 (2007), no. 4, 610–616. (Russian)
  • —, The layer-by-layer growth of a quasiperiodic Rauzy tiling, Kristallografiya 52 (2007), no. 2, 204–210. (Russian)
  • —, Quasiperiods of layer-by-layer growth of the Rauzy tiling, Kristallografiya 52 (2007), no. 1, 7–14. (Russian)
  • —, The diffraction of the two-dimensional quasiperiodic Rauzy tiling, Kristallografiya 53 (2008), no. 6, 978–986. (Russian)
  • —, Construction of the two-dimensional quasiperiodic Rauzy tiling by means of similarity transformation, Kristallografiya 54 (2009), no. 3, 389–399. (Russian)
  • A. V. Maleev, A. V. Shutov, and V. G. Zhuravlev, Quasiperiodic tilings of plane constructed on the basis of cubic irrationalities, 27th N. V. Belov Scientific Readings, Nizhni Novgorod, 2008, pp. 29–31. (Russian)
  • Shigeki Akiyama, Self affine tiling and Pisot numeration system, Number theory and its applications (Kyoto, 1997) Dev. Math., vol. 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 7–17. MR 1738803
  • Shigeki Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 11–26. MR 1770451
  • P. Arnoux, V. Berthé, and S. Ito, Discrete planes, $\Bbb Z^2$-actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 2, 305–349 (English, with English and French summaries). MR 1906478
  • N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR 1970385, DOI 10.1007/b13861
  • Shunji Ito and Makoto Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), no. 2, 441–472. MR 1247666, DOI 10.3836/tjm/1270128497
  • Shunji Ito, Junko Fujii, Hiroko Higashino, and Shin-ichi Yasutomi, On simultaneous approximation to $(\alpha ,\alpha ^2)$ with $\alpha ^3+k\alpha -1=0$, J. Number Theory 99 (2003), no. 2, 255–283. MR 1968452, DOI 10.1016/S0022-314X(02)00076-8
  • Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 0485769
  • Robert V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403–441. MR 1460032
  • G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147–178 (French, with English summary). MR 667748
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 05B45, 52C20, 37B50
  • Retrieve articles in all journals with MSC (2010): 05B45, 52C20, 37B50
Bibliographic Information
  • V. G. Zhuravlev
  • Affiliation: Vladimir State Pedagogical University, Stroitelei 11, Vladimir 600024, Russia
  • Email: vzhuravlev@mail.ru
  • Received by editor(s): April 1, 2009
  • Published electronically: May 2, 2011
  • Additional Notes: Supported by RFBR (grant no. 08-01-00326)
  • © Copyright 2011 American Mathematical Society
  • Journal: St. Petersburg Math. J. 22 (2011), 529-555
  • MSC (2010): Primary 05B45, 52C20, 37B50
  • DOI: https://doi.org/10.1090/S1061-0022-2011-01157-4
  • MathSciNet review: 2768960