Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Spectral estimates for a periodic fourth-order operator


Authors: A. V. Badanin and E. L. Korotyaev
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 22 (2010), nomer 5.
Journal: St. Petersburg Math. J. 22 (2011), 703-736
MSC (2010): Primary 34L15; Secondary 34L40
DOI: https://doi.org/10.1090/S1061-0022-2011-01164-1
Published electronically: June 27, 2011
MathSciNet review: 2828825
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The operator $ H=\frac{d^4}{dt^4}+\frac{d}{dt}p\frac{d}{dt}+q$ with periodic coefficients $ p$, $ q$ on the real line is considered. The spectrum of $ H$ is absolutely continuous and consists of intervals separated by gaps. The following statements are proved: 1) the endpoints of gaps are periodic or antiperiodic eigenvalues or branch points of the Lyapunov function, and moreover, their asymptotic behavior at high energy is found; 2) the spectrum of $ H$ at high energy has multiplicity two; 3) if $ p$ belongs to a certain class, then for any $ q$ the spectrum of $ H$ has infinitely many gaps, and all branch points of the Lyapunov function, except for a finite number of them, are real and negative; 4) if $ q=0$ and $ p\to 0$, then at the beginning of the spectrum there is a small spectral band of multiplicity $ 4$, and its asymptotic behavior is found; the remaining spectrum has multiplicity 2.


References [Enhancements On Off] (What's this?)

  • 1. A. Badanin and E. Korotyaev, Spectral asymptotics for periodic fourth-order operators, Int. Math. Res. Not. 2005, no. 45, 2775-2814. MR 2182471 (2006f:34064)
  • 2. A. Badanin, J. Brüning, and E. Korotyaev, The Lyapunov function for Schrödinger operators with a periodic $ 2\times 2$ matrix potential, J. Funct. Anal. 234 (2006), no. 1, 106-126. MR 2214141 (2006k:47090)
  • 3. R. Carlson, Eigenvalue estimates and trace formulas for the matrix Hill's equation, J. Differential Equations 167 (2000), no. 1, 211-244. MR 1785119 (2001e:34157)
  • 4. -, A spectral transform for the matrix Hill's equation, Rocky Mountain J. Math. 34 (2004), no. 3, 869-895. MR 2087436 (2005e:34013)
  • 5. D. Chelkak and E. Korotyaev, Spectral estimates for Schrödinger operators with periodic matrix potentials on the real line, Int. Math. Res. Not. 2006, Art. ID 60314, 41 pp. MR 2219217 (2007g:47071)
  • 6. S. Clark and F. Gesztesy, Weyl-Titchmarsh $ M$-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3475-3534. MR 1911509 (2003i:34191)
  • 7. S. Clark, F. Gesztesy, H. Holden, and B. Levitan, Borg-type theorems for matrix-valued Schrödinger and Dirac operators, J. Differential Equations 167 (2000), 181-210. MR 1785118 (2002d:34019)
  • 8. N. Dunford and J. T. Schwartz, Linear operators. Pt. II. Spectral theory. Selfadjoint operators in Hilbert space, Intersci. Publ. John Wiley and Sons, Inc., New York-London, 1963. MR 0188745 (32:6181)
  • 9. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Integrable systems. I, Dynamical Systems. IV, Itogi Nauki i Tekhniki Sovrem. Probl. Mat. Fundam. Naprav., vol. 4, VINITI, Moscow, 1985, pp. 179-285; English transl., Encyclopaedia Math. Sci., vol. 4, Springer-Verlag, Berlin-New York, 1990, pp. 173-280. MR 0842910 (87k:58112)
  • 10. I. M. Gel'fand and V. B. Lidskiĭ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Uspekhi Mat. Nauk 10 (1955), no. 1, 3-40. (Russian) MR 0073767 (17:482g)
  • 11. J. Hoppe, A. Laptev, and J. Östensson, Solitons and the removal of eigenvalues for fourth-order differential operators, Int. Math. Res. Not. 2006, Art ID 85050, 14 pp. MR 2233712 (2007i:34137)
  • 12. T. Kato, Perturbation theory for linear operators, Classics in Math., Springer-Verlag, Berlin, 1995. MR 1335452 (96a:47025)
  • 13. E. Korotyaev, Spectral estimates for matrix-valued periodic Dirac operators, Asymptot. Anal. 59 (2008), no. 3-4, 195-225. MR 2450359 (2009m:34202)
  • 14. -, Inverse resonance scattering on the real line, Inverse Problems 21 (2005), 325-341. MR 2146179 (2006a:34033)
  • 15. -, Conformal spectral theory for the monodromy matrix, Trans. Amer. Math. Soc. 362 (2010), 3435-3462. MR 2601596
  • 16. E. Korotyaev and A. Kutsenko, Borg-type uniqueness theorems for periodic Jacobi operators with matrix-valued coefficients, Proc. Amer. Math. Soc. 137 (2009), 1989-1996. MR 2480280 (2010j:47047)
  • 17. -, Lyapunov functions of periodic matrix-valued Jacobi operators, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2, vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 117-131. MR 2509779 (2010i:47062)
  • 18. E. Korotyaev and I. Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri Poincaré 8 (2007), 1151-1176. MR 2355344 (2008g:81076)
  • 19. M. G. Kreĭn, The basic propositions of the theory of $ \lambda$-zones of stability of a canonical system of linear differential equations with periodic coefficients, In Memory of Aleksandr Aleksandrovich Andronov, Akad. Nauk SSSR, Moscow, 1955. (Russian) MR 0075382 (17:738c)
  • 20. H. McKean, Boussinesq's equation on the circle, Comm. Pure Appl. Math. 34 (1981), 599-691. MR 0622617 (82j:58063)
  • 21. V. Mikhailets and V. Molyboga, Singular eigenvalue problems on the circle, Methods Funct. Anal. Topology 10 (2004), no. 3, 44-53. MR 2092532 (2005e:34255)
  • 22. -, Uniform estimates for the semi-periodic eigenvalues of the singular differential operators, Methods Funct. Anal. Topology 10 (2004), no. 4, 30-57. MR 2109216 (2005h:34221)
  • 23. F. G. Maksudov and O. A. Veliev, Spectral analysis of differential operators with periodic matrix coefficients, Differentsial'nye Uravneniya 25 (1989), no. 3, 400-409; English transl., Differential Equations 25 (1989), no. 3, 271-277. MR 0994320 (90d:47045)
  • 24. V. A. Marchenko, Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977; English transl., Oper. Theory Adv. Appl., vol. 22, Birkhäuser Verlag, Basel, 1986. MR 0481179 (58:1317); MR 0897106 (88f:34034)
  • 25. M. A. Naĭmark, Linear differential operators, 2nd ed.. Nauka, Moscow, 1969; English transl. of 1st ed., Frederick Ungar Publ. Co., New York, Pt. 1, 1967; Pt. 2, 1968. MR 0353061 (50:5547); MR 0216050 (35:6885); MR 0262880 (41:7485)
  • 26. V. G. Papanicolaou, The spectral theory of the vibrating periodic beam, Comm. Math. Phys. 170 (1995), 359-373. MR 1334400 (96d:34108)
  • 27. -, The periodic Euler-Bernoulli equation, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3727-3759. MR 1990171 (2004c:34041)
  • 28. V. G. Papanicolaou and D. Kravvaritis, The Floquet theory of the periodic Euler-Bernoulli equation, J. Differential Equations 150 (1998), 24-41. MR 1660270 (2000a:34167)
  • 29. J. Pöschel and E. Trubowitz, Inverse spectral theory, Pure Appl. Math., vol. 130, Acad. Press, Boston, MA, 1987. MR 0894477 (89b:34061)
  • 30. M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Acad. Press, New York-London, 1978. MR 0493421 (58:12429c)
  • 31. V. Tkachenko, Spectrum of 1-d selfadjoint periodic differential operator of order 4, Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002), Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 331-340. MR 1991552 (2004f:47066)
  • 32. -, Expansions associated with 1-d periodic differential operators of order 4, Recent Advances in Differential Equations and Mathematical Physics, Contemp. Math., vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 283-296. MR 2259115 (2007i:34140)
  • 33. -, Eigenfunction expansions associated with one-dimensional periodic differential operators of order $ 2n$, Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 66-89; English transl., Funct. Anal. Appl. 41 (2007), no. 1, 54-72. MR 2333983 (2008e:34202)
  • 34. V. A. Yakubovich and V. M. Starzhinskiĭ, Linear differential equations with periodic coefficients and their applications, Nauka, Moscow, 1972; English transl., Halsted Press, New York-Toronto, 1975. MR 0364739 (51:993); MR 0364740 (51:994)
  • 35. M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277-296. MR 0899652 (88h:81223)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34L15, 34L40

Retrieve articles in all journals with MSC (2010): 34L15, 34L40


Additional Information

A. V. Badanin
Affiliation: Northern (Arctic) Federal University, Northern Dvina Quay 17, Archangelsk, Russia
Email: an.badanin@gmail.com

E. L. Korotyaev
Affiliation: St. Petersburg State University, Ul′yanovskaya 3, Petrodvoretz, St. Petersburg 198504, Russia, and Leningrad State University named after A. S. Pushkin, Peterburgskoe Shosse 10, Pushkin, St. Petersburg 196605, Russia
Email: korotyaev@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2011-01164-1
Keywords: Periodic differential operator, spectral bands, spectral asymptotics
Received by editor(s): March 11, 2009
Published electronically: June 27, 2011
Additional Notes: The work of A. V. Badanin was partially supported by a joint grant of DAAD (the program “Mikhail Lomonosov-2007”) and by a grant of the Ministry of Education of RF (the program “Development of the scientific potential of the higher school in 2006–2008”). Part of the paper was written at the Mathematical Institute of Potsdam University, Germany (September–December, 2007). Part of the work was done by E. L. Korotyaev at the Institute of Mathematics of Tsukkuba University, Japan (March, 2010) and at École Polytéchnique, France (April–July, 2010). The authors are grateful to these institutions for their hospitality.
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society