Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Orthogonal subsets of root systems and the orbit method
HTML articles powered by AMS MathViewer

by M. V. Ignat′ev
Translated by: the author
St. Petersburg Math. J. 22 (2011), 777-794
DOI: https://doi.org/10.1090/S1061-0022-2011-01167-7
Published electronically: June 27, 2011

Abstract:

Let $k$ be the algebraic closure of a finite field, $G$ a Chevalley group over $k$, $U$ the maximal unipotent subgroup of $G$. To each orthogonal subset $D$ of the root system of $G$ and each set $\xi$ of $|D|$ nonzero scalars in $k$ one can assign the coadjoint orbit of $U$. It is proved that the dimension of such an orbit does not depend on $\xi$. An upper bound for this dimension is also given in terms of the Weyl group.
References
  • Carlos A. M. André, The basic character table of the unitriangular group, J. Algebra 241 (2001), no. 1, 437–471. MR 1839342, DOI 10.1006/jabr.2001.8734
  • Carlos A. M. André and Ana Margarida Neto, Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$, J. Algebra 305 (2006), no. 1, 394–429. MR 2264135, DOI 10.1016/j.jalgebra.2006.04.030
  • M. Boyarchenko and V. Drinfeld, A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic, arXiv: math.RT/0609769v1.
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • M. V. Ignat′ev and A. N. Panov, Coadjoint orbits of the group $\textrm {UT}(7,K)$, Fundam. Prikl. Mat. 13 (2007), no. 5, 127–159 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 156 (2009), no. 2, 292–312. MR 2379743, DOI 10.1007/s10958-008-9267-0
  • M. V. Ignat′ev, Subregular characters of the unitriangular group over a finite field, Fundam. Prikl. Mat. 13 (2007), no. 5, 103–125 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 156 (2009), no. 2, 276–291. MR 2379742, DOI 10.1007/s10958-008-9266-1
  • M. V. Ignat′ev, Basic subsystems in the root systems $B_n$ and $D_n$ and associated coadjoint orbits, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 3 (2008), 124–148 (Russian, with English and Russian summaries). MR 2473733
  • M. V. Ignat′ev, Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups, Mat. Zametki 86 (2009), no. 1, 65–80 (Russian, with Russian summary); English transl., Math. Notes 86 (2009), no. 1-2, 65–80. MR 2588639, DOI 10.1134/S0001434609070074
  • D. Kazhdan, Proof of Springer’s hypothesis, Israel J. Math. 28 (1977), no. 4, 272–286. MR 486181, DOI 10.1007/BF02760635
  • A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175, DOI 10.1090/gsm/064
  • A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
  • A. A. Kirillov, Variations on the triangular theme, Lie groups and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 43–73. MR 1364453, DOI 10.1090/trans2/169/05
  • Shantala Mukherjee, Coadjoint orbits for $A^+_{n-1},\ B^+_n$, and $D^+_n$, J. Lie Theory 16 (2006), no. 3, 455–469. MR 2248140
  • A. N. Panov, Involutions in $S_n$ and associated coadjoint orbits, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), no. Voprosy Teorii Predstavleniĭ Algebr i Grupp. 16, 150–173, 244 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 151 (2008), no. 3, 3018–3031. MR 2742857, DOI 10.1007/s10958-008-9016-4
  • Bhama Srinivasan, Representations of finite Chevalley groups, Lecture Notes in Mathematics, vol. 764, Springer-Verlag, Berlin-New York, 1979. A survey. MR 551499
  • Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
  • Robert Steinberg, Abstract homomorphisms of simple algebraic groups (after A. Borel and J. Tits), Séminaire Bourbaki, 25ème année (1972/1973), Lecture Notes in Math., Vol. 383, Springer, Berlin, 1974, pp. Exp. No. 435, pp. 307–326. MR 0414732
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 17B22
  • Retrieve articles in all journals with MSC (2010): 17B22
Bibliographic Information
  • M. V. Ignat′ev
  • Affiliation: Department of Algebra and Geometry, Samara State University, Ak. Pavlova 1, Samara 443011, Russia
  • Email: mihail.ignatev@gmail.com
  • Received by editor(s): April 14, 2010
  • Published electronically: June 27, 2011
  • © Copyright 2011 American Mathematical Society
  • Journal: St. Petersburg Math. J. 22 (2011), 777-794
  • MSC (2010): Primary 17B22
  • DOI: https://doi.org/10.1090/S1061-0022-2011-01167-7
  • MathSciNet review: 2828828