Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Orthogonal subsets of root systems and the orbit method


Author: M. V. Ignat′ev
Translated by: the author
Original publication: Algebra i Analiz, tom 22 (2010), nomer 5.
Journal: St. Petersburg Math. J. 22 (2011), 777-794
MSC (2010): Primary 17B22
DOI: https://doi.org/10.1090/S1061-0022-2011-01167-7
Published electronically: June 27, 2011
MathSciNet review: 2828828
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be the algebraic closure of a finite field, $ G$ a Chevalley group over $ k$, $ U$ the maximal unipotent subgroup of $ G$. To each orthogonal subset $ D$ of the root system of $ G$ and each set $ \xi$ of $ \vert D\vert$ nonzero scalars in $ k$ one can assign the coadjoint orbit of $ U$. It is proved that the dimension of such an orbit does not depend on $ \xi$. An upper bound for this dimension is also given in terms of the Weyl group.


References [Enhancements On Off] (What's this?)

  • 1. C. A. M. André, The basic character table of the unitriangular group, J. Algebra 241 (2001), 437-471. MR 1839342 (2002e:20082)
  • 2. C. A. M. André and A. M. Neto, Super-characters of finite unipotent groups of types $ B_n$, $ C_n$ and $ D_n$, J. Algebra 305 (2006), 394-429. MR 2264135 (2007j:20013)
  • 3. M. Boyarchenko and V. Drinfeld, A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic, arXiv: math.RT/0609769v1.
  • 4. N. Bourbaki, Éléments de mathématique. Fasc. 34. Groupes et algèbres de Lie. Chapitres IV, V, VI, Actualités Sci. Indust., No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • 5. J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773 (53:633)
  • 6. -, Introduction to Lie algebras and representation theory, 2nd ed., Grad. Texts in Math., No. 9, Springer-Verlag, New York-Berlin, 1978. MR 0499562 (81b:17007)
  • 7. M. V. Ignat$ '$ev and A. N. Panov, Coadjoint orbits of the group $ \mathrm{UT}(7, K)$, Fundam. Prikl. Mat. 13 (2007), no. 5, 127-159; English transl., J. Math. Sci. (N. Y.) 156 (2009), no. 2, 292-312; See also arXiv:math.RT/0603649v3. MR 2379743 (2008m:20075)
  • 8. -, Subregular characters of the unitriangular group over a finite field, Fundam. Prikl. Mat. 13 (2007), no. 5, 103-125; English transl., J. Math. Sci. (N. Y.) 156 (2009), no. 2, 276-291; See also arXiv: math.RT/0801.3079v2. MR 2379742 (2009a:20074)
  • 9. -, Basic subsystems in the root systems $ B_n$ and $ D_n$ and associated coadjoint orbits, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2008, no. 3, 124-148. (Russian) MR 2473733 (2009i:20095)
  • 10. -, Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups, Mat. Zametki 86 (2009), no. 1, 65-80; English transl., Math. Notes 86 (2009), no. 1-2, 65-80; See also arXiv: math.RT/0904.2841v2. MR 2588639 (2011a:17019)
  • 11. D. Kazhdan, Proof of Springer's hypothesis, Israel J. Math. 28 (1977), 272-286. MR 0486181 (58:5959)
  • 12. A. A. Kirillov, Lectures on the orbit method, Nauchn. Kniga, Novosibirsk, 2002; English transl., Grad. Stud. in Math., vol. 64, Amer. Math. Soc., Providence, RI, 2004. MR 2069175 (2005c:22001)
  • 13. -, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (1962), no. 4, 57-110. (Russian) MR 0142001 (25:5396)
  • 14. -, Variations on the triangular theme, Lie Groups and Lie Algebras: E. B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 43-73. MR 1364453 (97a:20072)
  • 15. S. Mukherjee, Coadjoint orbits for $ A_{n-1}^+$, $ B_n^+$ and $ D_n^+$, arXiv: math.RT/0501332v1. J. Lie Theory 16 (2006), 455-469. MR 2248140 (2007c:17014)
  • 16. A. N. Panov, Involutions in $ S_n$ and associated coadjoint orbits, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), 150-173; English transl., J. Math. Sci. 151 (2008), no. 3, 3018-3031; See also math.RT/0801.3022v1. MR 2742857
  • 17. B. Srinivasan, Representations of finite Chevalley groups, Lecture Notes in Math., vol. 764, Springer, New York-Berlin, 1979. MR 0551499 (83a:20054)
  • 18. R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968. MR 0466335 (57:6215)
  • 19. -, Conjugacy classes in algebraic groups, Lecture Notes in Math., vol. 366, Springer, New York-Berlin, 1974. MR 0414732 (54:2827)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 17B22

Retrieve articles in all journals with MSC (2010): 17B22


Additional Information

M. V. Ignat′ev
Affiliation: Department of Algebra and Geometry, Samara State University, Ak. Pavlova 1, Samara 443011, Russia
Email: mihail.ignatev@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2011-01167-7
Keywords: Orthogonal subsets of root systems, coadjoint orbits
Received by editor(s): April 14, 2010
Published electronically: June 27, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society