Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On intrinsic isometries to Euclidean space


Author: A. Petrunin
Translated by: the author
Original publication: Algebra i Analiz, tom 22 (2010), nomer 5.
Journal: St. Petersburg Math. J. 22 (2011), 803-812
MSC (2010): Primary 53C23
DOI: https://doi.org/10.1090/S1061-0022-2011-01169-0
Published electronically: June 28, 2011
MathSciNet review: 2828830
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Compact metric spaces that admit intrinsic isometries to the Euclidean $ d$-space are considered. Roughly, the main result states that the class of such spaces coincides with the class of inverse limits of Euclidean $ d$-polyhedra.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Akopyan, $ PL$-analogue of Nash-Keiper theorem, preliminary version: http://www.moebiuscontest.ru/files/2007/akopyan.pdf www.moebiuscontest.ru
  • 2. A. V. Akopyan and A. S. Tarasov, A constructive proof of Kirszbraun's theorem, Mat. Zametki 84 (2008), no. 5, 781-784; English transl., Math. Notes 84 (2008), no. 5-6, 725-728. MR 2500644 (2010c:47123)
  • 3. V. N. Berestovskiĭ, The structure of locally compact homogeneous spaces with an intrinsic metric, Sibirsk. Mat. Zh. 30 (1989), no. 1, 23-34; English transl., Siberian Math. J. 30 (1989), no. 1, 16-25. MR 0995016 (90c:53120)
  • 4. D. Yu. Burago, Yu. D. Burago, and S. V. Ivanov, A course in metric geometry, Moscow-Igevsk, 2004; English variant, Grad. Stud. in Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001. MR 1835418 (2002e:53053)
  • 5. D. Burago, S. Ivanov, and D. Shoenthal, Two counterexamples in low-dimensional length geometry, Algebra i Analiz 19 (2007), no. 1, 46-59; English transl., St. Petersburg Math. J. 19 (2008), no. 1, 33-43. MR 2319509 (2008b:53101)
  • 6. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on $ \mathbb{R}^m$, J. Geom. 16 (1981), no. 2, 187-193. MR 0642266 (83b:51020)
  • 7. M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), Bd. 9, Springer-Verlag, Berlin, 1986. MR 0864505 (90a:58201)
  • 8. V. A. Zalgaller, Isometric imbedding of polyhedra, Dokl. Akad. Nauk SSSR 123 (1958), no. 4, 599-601. (Russian) MR 0103511 (21:2279)
  • 9. B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286.
  • 10. S. Krat, Approximation problems in length geometry, Ph.D. Thesis, The Pennsylvania State University, 2004. MR 2706488
  • 11. W. Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 1, 25-77. MR 1692467 (2000f:54029)
  • 12. H. Federer, Geometric measure theory, Grundlehren Math. Wiss., Bd. 153, Springer-Verlag, New York, Inc., New York, 1969. MR 0257325 (41:1976)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 53C23

Retrieve articles in all journals with MSC (2010): 53C23


Additional Information

A. Petrunin
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Email: petrunin@math.psu.edu

DOI: https://doi.org/10.1090/S1061-0022-2011-01169-0
Keywords: Intrinsic isometry, path isometry, Riemannian metric, polyhedron, pro-Euclidean space
Received by editor(s): February 10, 2010
Published electronically: June 28, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society