Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

The Krein differential system and integral operators of random matrix theory


Author: L. Sakhnovich
Original publication: Algebra i Analiz, tom 22 (2010), nomer 5.
Journal: St. Petersburg Math. J. 22 (2011), 835-846
MSC (2010): Primary 34L25
DOI: https://doi.org/10.1090/S1061-0022-2011-01171-9
Published electronically: June 28, 2011
MathSciNet review: 2828832
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Earlier, the Krein differential system has been studied under certain regularity conditions. In this paper, some cases are treated where these conditions are not fulfilled. Examples related to random matrix theory are studied.


References [Enhancements On Off] (What's this?)

  • 1. R. Bellman, Stability theory of differential equations, McGraw-Hill Book Co., Inc., New York, 1953. MR 0061235 (15:794b)
  • 2. K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory, Springer-Verlag, New York-Berlin, 1977. MR 0522847 (58:25578)
  • 3. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York, 1955. MR 0069338 (16:1022b)
  • 4. P. Deift, A. Its, and X. Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models and also in the theory of integrable statistical mechanics, Ann. of Math. (2) 146 (1997), 149-235. MR 1469319 (98k:47097)
  • 5. S. Denisov, To the spectral theory of Krein systems, Integral Equations Operator Theory 42 (2002), 166-173. MR 1870437 (2003e:34157)
  • 6. I. Gokhberg and M. Kreĭn, Theory of Volterra operators in Hilbert space and its applications, Nauka, Moscow, 1967; English transl., Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., vol. 24, Amer. Math. Soc., Providence, RI, 1970. MR 0218923 (36:2007); MR 0264447 (41:9041)
  • 7. M. G. Kreĭn, Continuous analogues of propositions on polynomials orthogonal on the unit circle, Dokl. Akad. Nauk SSSR 105 (1955), no. 4, 637-640. (Russian) MR 0080735 (18:291b)
  • 8. -, On the theory of accelerants and $ S$-matrices of canonical differential systems, Dokl. Akad. Nauk SSSR 111 (1956), no. 6, 1167-1170. (Russian) MR 0086978 (19:277f)
  • 9. B. R. Levin, Theoretical foundations of statistical radio engineering, Sovet. Radio, Moscow, 1968. (Russian)
  • 10. L. A. Sakhnovich, Operators, similar to the unitary operators, with absolutely continuous spectrum, Funktsional. Anal. i Prilozhen. 2 (1968), no. 1, 51-63; English transl. in Funct. Anal. Appl. 2 (1968), no. 1. MR 0232243 (38:569)
  • 11. -, Factorization of operators in $ L^{2}(a,b)$, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 40-45; English transl. in Funct. Anal. Appl. 13 (1979), no. 3. MR 0545366 (81a:47019)
  • 12. -, Equations with a difference kernel on a finite interval, Uspekhi Mat. Nauk 35 (1980), no. 4, 69-129; English transl., Russian Math. Surveys 35 (1980), no. 4, 81-152. MR 0586191 (81i:45011)
  • 13. -, Factorization problems and operator identities, Uspekhi Mat. Nauk 41 (1986), no. 1, 4-55; English transl., Russian Math. Surveys 41 (1986), no. 1, 1-64. MR 0832409 (87k:47041)
  • 14. -, On the properties of discrete and continuous spectra of the radial Dirac equation, Teoret. Mat. Fiz. 108 (1996), no. 1, 36-49; English transl., Theoret. and Math. Phys. 108 (1996), no. 1, 876-888 (1997). MR 1422419 (98b:34113)
  • 15. -, Integral equations with difference kernels on finite intervals, Oper. Theory Adv. Appl., vol. 84, Birkhäuser Verlag, Basel, 1996. MR 1383591 (97e:45001)
  • 16. -, On reducing the canonical system to two dual differential systems, J. Math. Anal. Appl. 255 (2001), 499-509. MR 1815796 (2002c:34138)
  • 17. -, Spectral theory of canonical differential systems. Method of operator identities, Oper. Theory Adv. Appl., vol. 107, Birkhäuser Verlag, Basel, 1999. MR 1690379 (2000e:47073)
  • 18. -, On Krein's differential system and its generalization, Integral Equations Operator Theory 55 (2006), 561-572. MR 2250163 (2008c:47070)
  • 19. -, Integrable operators and canonical differential systems, Math. Nachr. 280 (2007), no. 1-2, 205-220. MR 2290393 (2007m:47035)
  • 20. C. A. Tracy and H. Widom, Introduction to random matrices, Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), Lecture Notes in Phys., vol. 424, Springer, Berlin, 1993, pp. 103-130. MR 1253763 (95a:82050)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34L25

Retrieve articles in all journals with MSC (2010): 34L25


Additional Information

L. Sakhnovich
Email: lsakhnovich@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2011-01171-9
Keywords: Spectral function, scattering function, random matrix theory, triangular factorization
Received by editor(s): January 26, 2009
Published electronically: June 28, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society