Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

A problem with an obstacle that goes out to the boundary of the domain for a class of quadratic functionals on $ \mathbb{R}^N$


Author: A. A. Arkhipova
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 22 (2010), nomer 6.
Journal: St. Petersburg Math. J. 22 (2011), 847-875
MSC (2010): Primary 35J20
DOI: https://doi.org/10.1090/S1061-0022-2011-01172-0
Published electronically: August 18, 2011
MathSciNet review: 2798764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A variational problem with obstacle is studied for a quadratic functional defined on vector-valued functions $ u : \Omega\to \mathbb{R}^N, N>1$. It is assumed that the nondiagonal matrix that determines the quadratic form of the integrand depends on the solution and is ``split''. The role of the obstacle is played by a closed (possibly, noncompact) set $ \mathcal{K}$ in $ \mathbb{R}^N$ or a smooth hypersurface $ S$. It is assumed that $ u(x)\in\mathcal{K}$ or $ u(x)\in S$ a.e. on $ \Omega$. This is a generalization of a scalar problem with an obstacle that goes out to the boundary of the domain. It is proved that the solutions of the variational problems in question are partially smooth in $ \widebar{\Omega}$ and that the singular set $ \Sigma$ of the solution satisfies $ H_{n-2}(\Sigma)=0$.


References [Enhancements On Off] (What's this?)

  • 1. M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46. MR 0666107 (84b:58034)
  • 2. -, The singular set of the minima of certain quadratic functionals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 45-55. MR 0752579 (86a:49086)
  • 3. J. Jost and M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann. 262 (1983), 549-561. MR 0696525 (84i:35051)
  • 4. Michael Wiegner, Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 147 (1976), no. 1, 21–28. MR 0407430, https://doi.org/10.1007/BF01214271
  • 5. Stefan Hildebrandt and Kjell-Ove Widman, On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 1, 145–178. MR 0457936
  • 6. F. Duzaar, Variational inequalities and harmonic mappings, J. Reine Angew. Math. 374 (1987), 39-60. MR 0876220 (88m:58038)
  • 7. F. Duzaar and M. Fuchs, Optimal regularity theorems for variational problems with obstacles, Manuscripta Math. 56 (1986), 209-234. MR 0850371 (87k:49015)
  • 8. M. Fuchs, A regularity theorem for energy minimizing maps of Riemannian manifolds, Comm. Partial Differential Equations 12 (1987), 1309-1321. MR 0888462 (88g:58041)
  • 9. -, Some remarks on the boundary regularity for minima of variational problems with obstacles, Manuscripta Math. 54 (1985), 107-119. MR 0808683 (87b:49050)
  • 10. M. Fuchs and N. Fusco, Partial regularity results for vector-valued functions which minimize certain functionals having nonquadratic growth under smooth side conditions, J. Reine Angew. Math. 390 (1988), 67-78. MR 0953677 (89h:49005)
  • 11. Martin Fuchs and Michael Wiegner, The regularity of minima of variational problems with graph obstacles, Arch. Math. (Basel) 53 (1989), no. 1, 75–81. MR 1005172, https://doi.org/10.1007/BF01194875
  • 12. S. Hildebrandt, Harmonic mappings of Riemannian manifolds, Harmonic Mappings and Minimal Immersions (Montecatini, 1984), Lecture Notes in Math., vol. 1161, Springer, Berlin, 1985, pp. 1-117. MR 0821968 (87j:58030)
  • 13. Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 0433502, https://doi.org/10.1007/BF02392311
  • 14. S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 191-220. MR 0542048 (81a:35023)
  • 15. A. Arkhipova, Variational problem for an obstacle in ℝ^{ℕ} for a class of quadratic functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 362 (2008), no. Kraevye Zacachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 39, 15–47, 364 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 159 (2009), no. 4, 391–410. MR 2760549, https://doi.org/10.1007/s10958-009-9452-9
  • 16. Hugo Beirão da Veiga and Franco Conti, Equazioni ellittiche non lineari con ostacoli sottili. Applicazioni allo studio dei punti regolari, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 533–562 (Italian, with English summary). MR 0364862
  • 17. L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), 1067-1075. MR 0542512 (80i:35058)
  • 18. Jens Frehse, On Signorini’s problem and variational problems with thin obstacles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 343–362. MR 0509085
  • 19. D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl. (9) 60 (1981), 193-212. MR 0620584 (84j:49011)
  • 20. N. N. Ural′ceva, A problem with one-sided conditions on the boundary for a quasilinear elliptic equation, Problems in mathematical analysis, No. 6: Spectral theory, boundary value problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1977, pp. 172–189, 204 (Russian). MR 0509596
  • 21. -, On the regularity of solutions of variational inequalities, Uspekhi Mat. Nauk 42 (1987), no. 6, 151-174; English transl., Russian Math. Surveys 42 (1987), no. 6, 191-219. MR 0933999 (90c:35033)
  • 22. I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 49–66, 226 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 132 (2006), no. 3, 274–284. MR 2120184, https://doi.org/10.1007/s10958-005-0496-1
  • 23. G. Fichera, Existence theorems in elasticity, Handbuch der Physik, Bd. 6a/2, Springer-Verlag, Berlin, 1972.
  • 24. Jindřich Nečas, On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems, Rend. Mat. (6) 8 (1975), no. 2, 481–498 (English, with Italian summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday, II. MR 0382827
  • 25. N. Ural'tseva, Strong solutions of the generalized Signorini problem, Sibirsk. Mat. Zh. 19 (1978), no. 5, 1204-1212; English transl., Siberian Math. J. 19 (1978), no. 5, 850-856. MR 0508511 (80i:35166)
  • 26. R. Schumann, Zur Regularität einer Kontakt-Randwertaufgabe, Z. Anal. Anwendungen 9 (1990), no. 5, 455–465 (German, with English and Russian summaries). MR 1119544, https://doi.org/10.4171/ZAA/415
  • 27. A. A. Arkhipova and N. N. Ural'tseva, Regularity of solutions of diagonal elliptic systems under convex constraints on the boundary of the domain, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), 5-17; English transl., J. Soviet Math. 40 (1988), no. 5, 591-598. MR 0869237 (87m:35107)
  • 28. -, Regularity of the solutions of variational inequalities with convex constraints on the boundary of the domain for nonlinear operators with a diagonal principal part, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1987, vyp. 3, 13-19. (Russian) MR 0928154 (89f:35088)
  • 29. -, Limit smoothness of the solutions of variational inequalities under convex constraints on the boundary of the domain, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 5-16; English transl., J. Soviet Math. 49 (1990), no. 5, 1121-1128. MR 0918937 (88m:49001)
  • 30. Arina Arkhipova, Signorini-type problem in ℝ^{ℕ} for a class of quadratic functionals, Nonlinear partial differential equations and related topics, Amer. Math. Soc. Transl. Ser. 2, vol. 229, Amer. Math. Soc., Providence, RI, 2010, pp. 15–38. MR 2667630, https://doi.org/10.1090/trans2/229/02
  • 31. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., vol. 105, Princeton Univ. Press, Princeton, NJ, 1983. MR 0717034 (86b:49003)
  • 32. O. A. Ladyzhenskaya and N. N. Ural′tseva, \cyr Lineĭnye i kvazilineĭnye uravneniya èllipticheskogo tipa., Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
    Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627
  • 33. Mariano Giaquinta and Enrico Giusti, Nonlinear elliptic systems with quadratic growth, Manuscripta Math. 24 (1978), no. 3, 323–349. MR 0481490, https://doi.org/10.1007/BF01167835
  • 34. A. A. Arkhipova, On the regularity of solutions of boundary-value problem for quasilinear elliptic systems with quadratic nonlinearity, J. Math. Sci. 80 (1996), no. 6, 2208–2225. Nonlinear boundary-value problems and some questions of function theory. MR 1420674, https://doi.org/10.1007/BF02362383
  • 35. Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83-103. MR 0990191 (90i:58031)
  • 36. K.-O. Widman, Inequalities for the Green functions of second order elliptic operators, Univ. Linköping, Inst. Math., 1972.
  • 37. Kjell-Ove Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17–37 (1968). MR 0239264, https://doi.org/10.7146/math.scand.a-10841
  • 38. Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435, https://doi.org/10.1007/BF00375587
  • 39. N. N. Ural'tseva, Estimation on the boundary of the domain of derivatives of solutions of variational inequalities, Probl. Mat. Anal., No. 10, Leningrad. Gos. Univ., Leningrad, 1986, pp. 92-105; English transl., J. Soviet Math. 45 (1989), no. 3, 1181-1191. MR 0860572 (87k:35106)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J20

Retrieve articles in all journals with MSC (2010): 35J20


Additional Information

A. A. Arkhipova
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskaya Ul. 28, Stary Petergof, St. Petersburg 198504, Russia
Email: arina@AA1101.spb.edu

DOI: https://doi.org/10.1090/S1061-0022-2011-01172-0
Keywords: Variational problem, quadratic functional, nondiagonal matrix, Signorini condition
Received by editor(s): April 7, 2010
Published electronically: August 18, 2011
Additional Notes: Supported by RFBR (grant no. 09-01-00729) and by the grant NSH-4210.2010.1 for support of leading scientific schools
Dedicated: Dedicated to Vasiliĭ Mikhaĭlovich Babich
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society