Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr-Sommerfeld quantization condition, revisited


Author: D. R. Yafaev
Original publication: Algebra i Analiz, tom 22 (2010), nomer 6.
Journal: St. Petersburg Math. J. 22 (2011), 1051-1067
MSC (2010): Primary 47A40, 81U05
DOI: https://doi.org/10.1090/S1061-0022-2011-01183-5
Published electronically: August 22, 2011
MathSciNet review: 2760094
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The semiclassical limit, as the Planck constant $ \hbar$ tends to 0, of bound states of a quantum particle in a one-dimensional potential well is considered. The semiclassical asymptotic formulas for eigenfunctions are justified, and the Bohr-Sommerfeld quantization condition is recovered.


References [Enhancements On Off] (What's this?)

  • 1. V. M. Babich and V. S. Buldyrev, \cyr Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Tom l., Izdat. “Nauka”, Moscow, 1972 (Russian). \cyr Metod ètalonnykh zadach. [The method of canonical problems]; With the collaboration of M. M. Popov and I. A. Molotkov. MR 0426630
    V. M. Babič and V. S. Buldyrev, Short-wavelength diffraction theory, Springer Series on Wave Phenomena, vol. 4, Springer-Verlag, Berlin, 1991. Asymptotic methods; Translated from the 1972 Russian original by E. F. Kuester. MR 1245488
  • 2. M. V. Fedoryuk, Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983. (Russian) MR 0732787 (85m:34001)
  • 3. V. P. Maslov and M. V. Fedoryuk, \cyr Kvaziklassicheskoe priblizhenie dlya uravneniĭ kvantovoĭ mekhaniki., Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0461590
  • 4. B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique, Comm. Math. Phys. 109 (1987), 313-326. MR 0880418 (88e:81029)
  • 5. B. Helffer and D. Robert, Puits de potentiel généralisés et asymptotique semi-classique, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), no. 3, 291-331. MR 0776281 (86m:81049)
  • 6. L. D. Landau and E. M. Lifšic, \cyr Mekhanika, Theoretical Physics, Vol. I, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (Russian). MR 0102191
    L. D. Landau and E. M. Lifshitz, Course of theoretical physics. Vol. 1, 3rd ed., Pergamon Press, Oxford-New York-Toronto, Ont., 1976. Mechanics; Translated from the Russian by J. B. Skyes and#J. S. Bell. MR 0475051
  • 7. F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697
  • 8. B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120 (1984), 89-118. MR 0750717 (87h:81045a)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 47A40, 81U05

Retrieve articles in all journals with MSC (2010): 47A40, 81U05


Additional Information

D. R. Yafaev
Affiliation: Irmar, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
Email: yafaev@univ-rennes1.fr

DOI: https://doi.org/10.1090/S1061-0022-2011-01183-5
Keywords: Schrödinger equation, potential well, Airy functions, Green–Liouville approximation, Bohr–Sommerfeld quantization condition, semiclassical Weyl formula
Received by editor(s): August 5, 2010
Published electronically: August 22, 2011
Additional Notes: Partially supported by the project NONAa, ANR-08-BLANC-0228
Dedicated: To Vasiliĭ Mikhaĭlovich Babich on his 80th birthday
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society