Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Traces of $ C^k$ functions on weak Markov subsets of $ \mathbb{R}^n$


Authors: A. Brudnyĭ and Yu. Brudnyĭ
Translated by: the authors
Original publication: Algebra i Analiz, tom 23 (2011), nomer 1.
Journal: St. Petersburg Math. J. 23 (2012), 39-56
MSC (2010): Primary 26B35
DOI: https://doi.org/10.1090/S1061-0022-2011-01185-9
Published electronically: November 7, 2011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A wide class of closed subsets of $ \mathbb{R}^n$ is introduced; these subsets admit constructive $ C^{k,\omega}$ extensions with good bounds for the corresponding extension constants.


References [Enhancements On Off] (What's this?)

  • [B] A. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Indag. Math. 14 (1952), 339-344. MR 0048540 (14:28e)
  • [BB1] A. Brudnyi and Yu. Brudnyi, Methods of geometric analysis in extension and trace problems (to appear).
  • [BB2] -, Remez type inequalities and Morrey-Campanato spaces on Ahlfors regular sets, Contemp. Math., vol. 445, Amer. Math. Soc., Providence, RI, 2007, pp. 19-44. MR 2381884 (2010a:46078)
  • [BG] Yu. Brudnyĭ and M. Ganzburg, On an extremal problems for polynomials in $ n$ variables, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), no. 2, 344-355; English transl., Math. USSR-Izv. 7 (1973), 345-356. MR 0352825 (50:5311)
  • [BM] E. Bierstone and P. Milman, $ C^m$ norms on finite sets and $ C^m$ extension criteria, Duke Math. J. 137 (2007), 1-18. MR 2309142 (2008f:58009)
  • [BSh1] Yu. Brudnyĭ and P. Shvartsman, A linear extension operator for a space of smooth functions defined on closed subsets of $ \mathbb{R}^n$, Dokl. Akad. Nauk SSSR 280 (1985), no. 2, 268-282; English transl., Soviet Math. Dokl. 31 (1985), no. 1, 48-51. MR 0775048 (86f:46031)
  • [BSh2] -, The Whitney problem of existence of a linear extension operator, J. Geom. Anal. 7 (1997), no. 4, 515-574. MR 1669235 (2000a:46051)
  • [BSh3] -, Whitney extension problem for multivariate $ C^{1,\omega}$-functions, Trans. Amer. Math. Soc. 353 (2001), 2487-2512. MR 1814079 (2002b:46052)
  • [DGK] L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., Providence, RI, 1963, pp. 101-180. MR 0157289 (28:524)
  • [F1] Ch. Fefferman, Whitney's extension problem for certain function spaces, Preprint, 2003.
  • [F2] -, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoamericana 21 (2005), 313-348. MR 2155023 (2006h:58009)
  • [F3] -, A sharp form of Whitney's extension theorem, Ann. of Math. (2) 161 (2005), 509-577. MR 2150391 (2006h:58008)
  • [F4] -, Whitney's extension problem for $ C^m$, Ann. of Math. (2) 164 (2006), 313-359. MR 2233850 (2007g:58013)
  • [F5] -, Fitting a $ C^m$-smooth function to data. III, Ann. of Math. (2) 170 (2009), no. 1, 427-441. MR 2521121 (2011e:58014)
  • [F6] -, $ C^m$ extensions by linear operators, Ann. of Math. (2) 166 (2007), no. 12, 779-835. MR 2373373 (2009b:46069)
  • [F7] -, The structure of linear extension operators for $ C^m$, Rev. Mat. Iberoamericana 23 (2007), 269-280. MR 2351135 (2009c:41003)
  • [Fal] K. Falconer, Fractal geometry. Mathematical foundations and applications, 2nd ed., John Wiley, Hoboken, NJ, 2003. MR 2118797 (2006b:28001)
  • [Fed] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., Bd. 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325 (41:1976)
  • [G] G. Glaeser, Étude de quelques algèbres tayloriennes, J. Anal. Math. 6 (1958), 1-124. MR 0101294 (21:107)
  • [J] F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, Intersci. Publ., Inc., New York, NY, 1948, pp. 187-204. MR 0030135 (10:719b)
  • [JW] A. Jonsson and H. Wallin, Function spaces on subsets of $ \mathbb{R}^n$, Math. Rep. 2 (1984), no. 1, 221 pp. MR 0820626 (87f:46056)
  • [L] G. K. Luli, $ C^{m,\omega}$ extension by bounded-depth linear operators, Adv. Math. 224 (2010), 1927-2021. MR 2646115 (2011g:58012)
  • [Sh1] P. A. Shvartsman, On the traces of functions of the Zygmund class, Sibirsk. Mat. Zh. 28 (1987), no. 5, 203-215; English transl., Siberian Math. J. 28 (1987), no. 5, 848-865. MR 0924998 (89a:46081)
  • [Sh2] -, The Whitney extension problem and Lipschitz selections of set-valued mappings in jet-spaces, Trans. Amer. Math. Soc. 360 (2008), 5529-5550. MR 2415084 (2009j:46086)
  • [W1] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. MR 1501735
  • [W2] -, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369-387. MR 1501749

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 26B35

Retrieve articles in all journals with MSC (2010): 26B35


Additional Information

A. Brudnyĭ
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
Email: albru@math.ucalgary.ca

Yu. Brudnyĭ
Affiliation: Department of Mathematics, Technion, Haifa, Israel
Email: ybrudnyi@math.technion.ac.il

DOI: https://doi.org/10.1090/S1061-0022-2011-01185-9
Keywords: Weak Markov sets, linear $C^{k, \omega}$ extension, finiteness constants, depth of finite order
Received by editor(s): August 20, 2010
Published electronically: November 7, 2011
Additional Notes: Research of the first author was supported in part by NSERC
Dedicated: In memory of Mikhail Shlemovich Birman
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society