Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On connections between the the theory of random operators and the theory of random matrices


Author: L. Pastur
Translated by: the author
Original publication: Algebra i Analiz, tom 23 (2011), nomer 1.
Journal: St. Petersburg Math. J. 23 (2012), 117-137
MSC (2010): Primary 15B52, 60B20, 47B80
DOI: https://doi.org/10.1090/S1061-0022-2011-01189-6
Published electronically: November 8, 2011
MathSciNet review: 2760151
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For several families of selfadjoint ergodic operators, it is proved that, as the parameter that indexes the operators of a family tends to infinity, the integrated density of states converges weakly to the infinite size limit of the normalized counting measure of eigenvalues of certain random matrices. The subsequent informal discussion is devoted to the role of these results as possible indications of the presence of the continuous spectrum for random ergodic operators belonging to the families under consideration, when the indexing parameter values are sufficiently large.


References [Enhancements On Off] (What's this?)

  • 1. M. Aizenman, F. Germinet, A. Klein, and S. Warzel, On Bernoulli decompositions for random variables, concentration bounds, and spectral localization, Probab. Theory Related Fields 143 (2009), 219-238. MR 2449128 (2009k:60042)
  • 2. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space. Vols. 1, 2, 3rd ed., Vishcha Shkola, Khar'kov, 1977, 1978; English transl., Dover, New York, 1993. MR 0486990 (82g:47001a); MR 0509335 (82g:47001b); MR 1255973 (94i:47001)
  • 3. G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge Stud. in Adv. Math., vol. 118, Cambridge Univ. Press, Cambridge, 2010. MR 2760897
  • 4. S. Bachmann and W. De Roeck, From the Anderson model on a strip to the DMPK equation and random matrix theory, arXiv:0912.1574.
  • 5. Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer, New York, 2010. MR 2567175 (2011d:60014)
  • 6. G. Ben Arous and S. Péché, Universality of local eigenvalue statistics for some sample covariance matrices, Comm. Pure Appl. Math. 58 (2005), 1316-1357. MR 2162782 (2006h:62072)
  • 7. Yu. M. Berezanskiĭ, Expansions in eigenfunctions of selfadjoint operators, Naukova Dumka, Kiev, 1965; English transl., Transl. Math. Monogr., vol. 17, Amer. Math. Soc., Providence, RI, 1968. MR 0222719 (36:5769); MR 0222718 (36:5768)
  • 8. V. Bogachev, Gaussian measures, Nauka, Moscow, 1997; English transl., Math. Surveys Monogr., vol. 62, Amer. Math. Soc., Providence, RI, 1998. MR 1663929 (2000b:60097); MR 1642391 (2000a:60004)
  • 9. E. Brézin and S. Hikami, Correlations of nearby levels induced by a random potential, Nuclear Phys. B 479 (1996), 697-706. MR 1418841 (97j:82080)
  • 10. J.-M. Combes, F. Germinet, and A. Klein, Generalized eigenvalue-counting estimates for the Anderson model, J. Stat. Phys. 135 (2009), 201-216. MR 2505733 (2010j:82053)
  • 11. M. Disertori, H. Pinson, and T. Spencer, Density of states for random band matrices, Comm. Math. Phys. 232 (2002), 83-124. MR 1942858 (2004c:82052)
  • 12. M. Disertori, W. Kirsch, A. Klein, F. Klopp, and V. Rivasseau, Random Schrödinger operators, Panoramas et Synthèses [Panoramas and Syntheses], vol. 25, Soc. Math. France, Paris, 2008. MR 2516524 (2010a:82030)
  • 13. K. Efetov, Supersymmetry in disorder and chaos, Cambridge Univ. Press, Cambridge, 1997. MR 1628498 (99m:82001)
  • 14. L. Erdös, Universality of Wigner random matrices: a survey of recent results, arXiv:1004.0801.
  • 15. L. Erdös and A. Knowles, Quantum diffusion and eigenfunction delocalization in a random band matrix model, arXiv:1002.1695. MR 2782623
  • 16. P. Forrester, Log-gas and random matrices, available at http://www.ms. unimelb.edu.au/ matpjf/matpjf.html
  • 17. Y. V. Fyodorov and A. D. Mirlin, Scaling properties of localization in random band matrices: a $ \sigma $-model approach, Phys. Rev. Lett. 67 (1991), 2405-2409. MR 1130103 (92g:82048)
  • 18. P. C. Hemmer and J. L. Lebowitz, Systems with weak long-range potentials, Phase Transitions and Critical Phenomena. Vol. 5b (C. Domb and M. S. Green, eds.), Acad. Press, London, 1976, pp. 107-203. MR 0503012 (58:19880)
  • 19. K. Johansson, Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215 (2001), 683-705. MR 1810949 (2002j:15024)
  • 20. -, Universality for certain Hermitian Wigner matrices under weak moment conditions, arXiv:0910.4467.
  • 21. A. Khorunzhy, B. Khoruzhenko, L. Pastur, and M. Shcherbina, Large-n limit in statistical mechanics and the spectral theory of disordered systems, Phase Transitions and Critical Phenomena. Vol. 15 (C. Domb, J. Lebowitz, eds.), Acad. Press, New York, 1992, pp. 74-239.
  • 22. A. Khorunzhy and L. Pastur, Limits of infinite interaction radius, dimensionality and the number of components for random operators with off-diagonal randomness, Comm. Math. Phys. 153 (1993), 605-646. MR 1218934 (94g:82024)
  • 23. W. Kirsch, O. Lenoble, and L. Pastur, On the Mott formula for the ac conductivity and binary correlators in the strong localization regime of disordered systems, J. Phys. A 36 (2003), 12157-12180. MR 2025824 (2005c:82080)
  • 24. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the theory of disordered systems, Nauka, Moscow, 1982; English transl., Wiley, New York, 1988. MR 0672422 (84j:82084); MR 1042095 (90k:82073)
  • 25. A. Lytova and L. Pastur, Central limit theorem for linear eigenvalue statistics of random matrices with independent entries, Ann. Probab. 37 (2009), 1778-1840. MR 2561434 (2011c:60024)
  • 26. V. A. Marchenko and L. A. Pastur, The eigenvalue distribution in some ensembles of random matrices, Mat. Sb. 72 (114) (1967), no. 4, 507-536; English transl., Math. USSR-Sb. 1 (1967), 457-483. MR 0208649 (34:8458)
  • 27. M. L. Mehta, Random matrices, Pure Appl. Math., vol. 142, Elsevier, Amsterdam, 2004. MR 2129906 (2006b:82001)
  • 28. A. Mirlin and Ya. Fyodorov, The statistics of eigenvector components of random band matrices: analytical results, J. Phys. A 26 (1993), L551-L558. MR 1236144 (94f:82036)
  • 29. S. A. Molchanov, L. A. Pastur, and A. M. Khorunzhiĭ, Distribution of the eigenvalues of random band matrices in the limit of their infinite order, Teoret. Mat. Fiz. 90 (1992), no. 2, 163-178; English transl., Theoret. and Math. Phys. 90 (1992), 108-118. MR 1182292 (93g:82056)
  • 30. R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982. MR 0652932 (84c:62073)
  • 31. P. Neu and R. Speicher, Rigorous mean-field model for coherent-potential approximation: Anderson model with free random variables, J. Stat. Phys. 80 (1995), 1279-1308. MR 1349982 (96i:82102)
  • 32. A. Pajor and L. Pastur, On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution, Studia Math. 195 (2009), 11-29. MR 2539559 (2010h:15022)
  • 33. L. Pastur, The spectrum of random matrices, Teoret. Mat. Fiz. 10 (1972), no. 1, 102-112; English transl., Theoret. and Math. Phys. 10 (1972), 67-74. MR 0475502 (57:15106)
  • 34. -, A simple approach to the global regime of Gaussian ensembles of random matrices, Ukrain. Mat. Zh. 57 (2005), no. 6, 790-817; English transl., Ukrainian Math. J. 57 (2005), no. 6, 936-966. MR 2208456 (2007d:82079)
  • 35. -, Eigenvalue distribution of random matrices, Random Media 2000 (J. Wehr, ed.), Lectures from the Summer School ``Random Media 2000'' held in Mandralin, Poland. ICM Warsaw Univ., Warsaw, 2007, pp. 95-206.
  • 36. L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., Bd. 297, Springer, Berlin, 1992. MR 1223779 (94h:47068)
  • 37. L. Pastur and M. Shcherbina, Bulk universality and related properties of Hermitian matrix models, J. Stat. Phys. 130 (2008), 205-250. MR 2375744 (2008k:82050)
  • 38. L. Pastur and V. Vasilchuk, On the law of addition of random matrices, Comm. Math. Phys. 214 (2000), 249-286. MR 1796022 (2002b:60037)
  • 39. -, On the law of addition of random matrices: covariance and the central limit theorem for traces of resolvent, Probability and Mathematical Physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 399-416. MR 2352281 (2008k:60054)
  • 40. D. A. Rowlands, Short-range correlations in disordered systems: nonlocal coherent-potential approximation, Rep. Prog. Phys. 72 (2009), 086501.
  • 41. J. Schenker, Eigenvector localization for random band matrices with power law band width, Comm. Math. Phys. 290 (2009), 1065-1097. MR 2525652 (2010i:60024)
  • 42. T. Shcherbina, On universality of bulk local regime of the deformed Gaussian unitary ensemble, Zh. Mat. Fiz. Anal. Geom. 5 (2009), 396-433. (English) MR 2590774 (2011f:60011)
  • 43. T. Spencer, Random banded and sparse matrices, The Oxford Handbook of Random Matrix Theory (G. Akemann, J. Baik, Ph. DiFrancesco, eds.), Oxford Univ. Press, Oxford, 2011.
  • 44. H. Stanley, Introduction to phase transitions and critical phenomena, Clarendon Press, Oxford, 1971.
  • 45. T. Tao and V. Vu, Random matrices: universality of local eigenvalue statistics, arXiv:0906.0510; Acta Math. 206 (2011), no. 1, 127-204. MR 2784665
  • 46. -, Random covariance matrices: universality of local statistics of eigenvalues, arXiv:0912.0966.
  • 47. C. J. Thompson, Mathematical statistical mechanics, Princeton Univ. Press, Princeton, 1979. MR 0548873 (80h:82001) 1pc
  • 48. V. Valko and B. Virag, Random Schrödinger operators on long boxes, noise explosion and the GOE, arXiv:0912.0097.
  • 49. D. Voiculescu, Aspects of free probability, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 145-157. MR 2227827 (2007b:46120)
  • 50. F. Wegner, Disordered electronic systems as a model of interacting matrices, Phys. Rep. 67 (1980), 15-24. MR 0600875

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 15B52, 60B20, 47B80

Retrieve articles in all journals with MSC (2010): 15B52, 60B20, 47B80


Additional Information

L. Pastur
Affiliation: Mathematics Division, Institute for Low Temperatures, Kharkov, Ukraine
Email: pastur2001@yahoo.com

DOI: https://doi.org/10.1090/S1061-0022-2011-01189-6
Keywords: Random matrices, random ergodic operators, integrated density of states
Received by editor(s): September 15, 2010
Published electronically: November 8, 2011
Dedicated: To the memory of M. Sh. Birman
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society