Zeta-functions of harmonic theta-series and prime numbers
Author:
A. Andrianov
Translated by:
the author
Original publication:
Algebra i Analiz, tom 23 (2011), nomer 2.
Journal:
St. Petersburg Math. J. 23 (2012), 239-255
MSC (2010):
Primary 11F27; Secondary 11F46, 11F60, 14G10, 20C08
DOI:
https://doi.org/10.1090/S1061-0022-2012-01195-7
Published electronically:
January 23, 2012
MathSciNet review:
2841672
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The problem of finding Euler product expansions is treated for zeta-functions of modular forms in one variable that are presented by harmonic theta-series. On the basis of the author's formulas obtained earlier for the action of the Hecke operators on harmonic theta-functions, Euler product expansions are obtained for eigenfunctions of Hecke operators. For the theta-series of quadratic forms proportional to the sum of two squares, the eigenfunctions of Hecke operators are constructed and the associated Euler expansions are calculated.
- 1. A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren Math. Wiss., Bd. 286, Springer-Verlag, Berlin, 1987. MR 0884891 (88g:11028)
- 2. -, Symmetries of harmonic theta functions of integer-valued quadratic forms, Uspekhi Mat. Nauk 50 (1995), no. 4, 3-44; English transl., Russian Math. Surveys 50 (1995), no. 4, 661-700. MR 1357882 (96i:11041)
- 3. -, Harmonic theta-functions and Hecke operators, Algebra i Analiz 8 (1996), no. 5, 1-31; English transl., St. Petersburg Math. J. 8 (1997), no. 5, 695-720. MR 1428987 (98a:11053)
- 4. -, Interaction sums and action of Hecke operators on theta-series, Acta Arith. 140 (2009), no. 3, 271-304. MR 2564466 (2011c:11080)
- 5. E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, II, Math. Ann. 114 (1937), 1-28, 316-351 (=Math. Werke, Vandenhoeck and Ruprecht, Göttingen, 1959, pp. 644-707). MR 1513122; MR 1513142
- 6. A. Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993 (41:1648)
- 7. B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), no. 1, 511-523, 780. MR 1513241; MR 1513260
- 8. C. L. Siegel, Lectures on advanced analytic number theory, Tata Inst. Fund. Res. Lectures on Math., No. 23, Tata Inst. Fund. Res., Bombay, 1961 (Reissued, 1965). MR 0262150 (41:6760)
- 9. I. M. Vinogradov, Elements of number theory, GITTL, Moscow-Leningrad, 1952; English transl., Dover Publ., Inc., New York, 1954. MR 0062138 (15:933e)
- 10. A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., No. 1041, Hermann, Paris, 1948. MR 0027151 (10:262c)
Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11F27, 11F46, 11F60, 14G10, 20C08
Retrieve articles in all journals with MSC (2010): 11F27, 11F46, 11F60, 14G10, 20C08
Additional Information
A. Andrianov
Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
Address at time of publication:
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email:
anatoli.andrianov@gmail.com, andriano@mpim-bonn.mpg.de
DOI:
https://doi.org/10.1090/S1061-0022-2012-01195-7
Keywords:
Euler products,
harmonic theta-functions and theta-series,
Hecke operators,
prime numbers,
zeta-functions of theta-functions and theta-series
Received by editor(s):
October 12, 2010
Published electronically:
January 23, 2012
Additional Notes:
The author was supported in part by RFBR (grant 08-01-00233).
Article copyright:
© Copyright 2012
American Mathematical Society