Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Zeta-functions of harmonic theta-series and prime numbers

Author: A. Andrianov
Translated by: the author
Original publication: Algebra i Analiz, tom 23 (2011), nomer 2.
Journal: St. Petersburg Math. J. 23 (2012), 239-255
MSC (2010): Primary 11F27; Secondary 11F46, 11F60, 14G10, 20C08
Published electronically: January 23, 2012
MathSciNet review: 2841672
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of finding Euler product expansions is treated for zeta-functions of modular forms in one variable that are presented by harmonic theta-series. On the basis of the author's formulas obtained earlier for the action of the Hecke operators on harmonic theta-functions, Euler product expansions are obtained for eigenfunctions of Hecke operators. For the theta-series of quadratic forms proportional to the sum of two squares, the eigenfunctions of Hecke operators are constructed and the associated Euler expansions are calculated.

References [Enhancements On Off] (What's this?)

  • 1. A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren Math. Wiss., Bd. 286, Springer-Verlag, Berlin, 1987. MR 0884891 (88g:11028)
  • 2. -, Symmetries of harmonic theta functions of integer-valued quadratic forms, Uspekhi Mat. Nauk 50 (1995), no. 4, 3-44; English transl., Russian Math. Surveys 50 (1995), no. 4, 661-700. MR 1357882 (96i:11041)
  • 3. -, Harmonic theta-functions and Hecke operators, Algebra i Analiz 8 (1996), no. 5, 1-31; English transl., St. Petersburg Math. J. 8 (1997), no. 5, 695-720. MR 1428987 (98a:11053)
  • 4. -, Interaction sums and action of Hecke operators on theta-series, Acta Arith. 140 (2009), no. 3, 271-304. MR 2564466 (2011c:11080)
  • 5. E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, II, Math. Ann. 114 (1937), 1-28, 316-351 (=Math. Werke, Vandenhoeck and Ruprecht, Göttingen, 1959, pp. 644-707). MR 1513122; MR 1513142
  • 6. A. Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993 (41:1648)
  • 7. B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), no. 1, 511-523, 780. MR 1513241; MR 1513260
  • 8. C. L. Siegel, Lectures on advanced analytic number theory, Tata Inst. Fund. Res. Lectures on Math., No. 23, Tata Inst. Fund. Res., Bombay, 1961 (Reissued, 1965). MR 0262150 (41:6760)
  • 9. I. M. Vinogradov, Elements of number theory, GITTL, Moscow-Leningrad, 1952; English transl., Dover Publ., Inc., New York, 1954. MR 0062138 (15:933e)
  • 10. A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., No. 1041, Hermann, Paris, 1948. MR 0027151 (10:262c)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11F27, 11F46, 11F60, 14G10, 20C08

Retrieve articles in all journals with MSC (2010): 11F27, 11F46, 11F60, 14G10, 20C08

Additional Information

A. Andrianov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
Address at time of publication: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Keywords: Euler products, harmonic theta-functions and theta-series, Hecke operators, prime numbers, zeta-functions of theta-functions and theta-series
Received by editor(s): October 12, 2010
Published electronically: January 23, 2012
Additional Notes: The author was supported in part by RFBR (grant 08-01-00233).
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society