Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

Average number of local minima for three-dimensional integral lattices


Author: A. A. Illarionov
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 23 (2011), nomer 3.
Journal: St. Petersburg Math. J. 23 (2012), 551-570
MSC (2010): Primary 11H06
Published electronically: March 2, 2012
MathSciNet review: 2896168
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An asymptotic formula is found for the average number of local minima of three-dimensional complete integral lattices with determinant in the interval $ [1,N]$. This is a generalization to the two-dimensional case of the classical result about the average length of a finite continued fraction with denominator belonging to $ [1,N]$.


References [Enhancements On Off] (What's this?)

  • 1. F. Klein, Uber eine geometrische Auffassung der gewohlichen Kettenbruchentwichlung, Nachr. Ges. Wiss. Göttingen 1895, no. 3, 357-359.
  • 2. G. F. Voronoĭ, Sobranie sočineniĭ v treh tomah, Izdatel′stvo Akademii Nauk Ukrainskoĭ SSR, Kiev., 1952 1953 (Russian). MR 0062686
  • 3. Hermann Minkowski, Généralisation de la théorie des fractions continues, Ann. Sci. École Norm. Sup. (3) 13 (1896), 41–60 (French). MR 1508923
  • 4. V. A. Bykovskiĭ, On the error of number-theoretic quadrature formulas, Dokl. Akad. Nauk 389 (2003), no. 2, 154–155 (Russian). MR 2003229
  • 5. V. A. Bykovskiĭ, On the error in number-theoretic quadrature formulas, Chebyshevskiĭ Sb. 3 (2002), no. 2(4), 27–33 (Russian, with Russian summary). Dedicated to the 85th birthday of Nikolaĭ Mikhaĭlovich Korobov (Russian). MR 2035611
  • 6. N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, 2nd ed., Moskovskiĭ Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004 (Russian). MR 2078157
  • 7. O. A. Gorkusha and N. M. Dobrovol′skiĭ, On estimates for the hyperbolic zeta function of lattices, Chebyshevskiĭ Sb. 6 (2005), no. 2(14), 129–137 (Russian, with Russian summary). MR 2262602
  • 8. A. A. Illarionov, An estimate for the number of relative minima of arbitrary-rank incomplete integer lattices, Dokl. Akad. Nauk 418 (2008), no. 2, 155–158 (Russian); English transl., Dokl. Math. 77 (2008), no. 1, 31–34. MR 2462063, 10.1134/S1064562408010080
  • 9. H. Heilbronn, On the average length of a class of finite continued fractions, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 87–96. MR 0258760
  • 10. M. O. Avdeeva, Lower bounds for the number of local minima of integer lattices, Fundam. Prikl. Mat. 11 (2005), no. 6, 9–14 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 146 (2007), no. 2, 5629–5633. MR 2204418, 10.1007/s10958-007-0377-x
  • 11. Gustav Lochs, Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmässigen Kettenbrüche, Monatsh. Math. 65 (1961), 27–52 (German). MR 0124308
  • 12. J. W. Porter, On a theorem of Heilbronn, Mathematika 22 (1975), no. 1, 20–28. MR 0498452
  • 13. Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR 633878
  • 14. H. Minkowski, Zur Theorie der Kettenbrüche, Gesammelte Abhandlungen. Bd. I, Teubner, Leipzig-Berlin, 1911, S. 278-292.
  • 15. V. A. Bykovskiĭ and O. A. Gorkusha, Minimal bases of three-dimensional complete lattices, Mat. Sb. 192 (2001), no. 2, 57–66 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 1-2, 215–223. MR 1835985, 10.1070/SM2001v192n02ABEH000542
  • 16. O. A. Gorkusha, Minimal bases of three-dimensional complete lattices, Mat. Zametki 69 (2001), no. 3, 353–362 (Russian, with Russian summary); English transl., Math. Notes 69 (2001), no. 3-4, 320–328. MR 1846834, 10.1023/A:1010227323598
  • 17. J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
  • 18. A. V. Ustinov, Solution of the Arnol′d problem on weak asymptotics for Frobenius numbers with three arguments, Mat. Sb. 200 (2009), no. 4, 131–160 (Russian, with Russian summary); English transl., Sb. Math. 200 (2009), no. 3-4, 597–627. MR 2531884, 10.1070/SM2009v200n04ABEH004011

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11H06

Retrieve articles in all journals with MSC (2010): 11H06


Additional Information

A. A. Illarionov
Affiliation: Khabarovsk Division, Institute of Applied Mathematics, Russian Academy of Sciences, 54 Dzerzhinskiǐ Street, Khabarovsk 680000, Russia
Email: illar_a@list.ru

DOI: https://doi.org/10.1090/S1061-0022-2012-01208-2
Keywords: Lattice, local minimum, multidimensional continued fraction, Euclid algorithm
Received by editor(s): November 30, 2009
Published electronically: March 2, 2012
Additional Notes: Supported by RFBR (grants nos. 10-01-98002r-siberia-a , 11-01-00628-a), by FED RAS (grants nos. 11-III-V-01M-002, 09-I-114-03), and by the grant MD-2339.2010.1 of the President of RF
Article copyright: © Copyright 2012 American Mathematical Society