Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
St. Petersburg Mathematical Journal
St. Petersburg Mathematical Journal
ISSN 1547-7371(online) ISSN 1061-0022(print)

 

Spectrum of the Laplace-Beltrami operator for certain congruence subgroups of the modular group


Authors: V. V. Golovchanskiĭ and M. N. Smotrov
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 23 (2011), nomer 4.
Journal: St. Petersburg Math. J. 23 (2012), 659-664
MSC (2010): Primary 11F72
Published electronically: April 13, 2012
MathSciNet review: 2893520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that, up to multiplicity, the spectra of automorphic Laplacians coincide in the case of the pairs of congruence subgroups $ \{\Gamma _0(16N),\Gamma _0(8N)\}$ and $ \{\Gamma _0(64N), \Gamma _0(32N)\}$ of the modular group, where $ N$ is an odd integer. A formula is obtained for the dimension of the subspaces of automorphic forms for the subgroups $ \Gamma _0(16N)$ and $ \Gamma _0(64N)$.


References [Enhancements On Off] (What's this?)

  • 1. G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for $ PSL_2(Z)$, DESY report 94-028, Hamburg, 1994.
  • 2. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • 3. Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168 (93d:20088)
  • 4. Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691 (2003k:11085)
  • 5. V. V. Golovchanskiĭ and M. N. Smotrov, An explicit formula for the number of classes of primitive hyperbolic elements of the group Γ₀(𝑁), Mat. Sb. 199 (2008), no. 7, 63–84 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 7-8, 1009–1031 (2008). MR 2488223 (2010a:11093), http://dx.doi.org/10.1070/SM2008v199n07ABEH003951
  • 6. V. V. Golovchanskiĭ and M. M. Smotrov, Multiplicative properties of the function for the number of classes of primitive hyperbolic elements in the congruence subgroup Γ₀(𝑁) of level 𝑁, Dal′nevost. Mat. Zh. 9 (2009), no. 1-2, 48–73 (Russian, with English and Russian summaries). MR 2742458 (2012a:11136)
  • 7. M. N. Huxley, Scattering matrices for congruence subgroups, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 141–156. MR 803366 (87e:11072)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11F72

Retrieve articles in all journals with MSC (2010): 11F72


Additional Information

V. V. Golovchanskiĭ
Affiliation: Khabarovsk Department, Institute of Applied Mathematics, Dzerzhinskiĭ Street 54, Khabarovsk 680000, Russia
Email: gsm@iam.khv.ru

M. N. Smotrov
Affiliation: Khabarovsk Department, Institute of Applied Mathematics, Dzerzhinskiĭ Street 54, Khabarovsk 680000, Russia

DOI: http://dx.doi.org/10.1090/S1061-0022-2012-01212-4
PII: S 1061-0022(2012)01212-4
Keywords: Automorphic forms, Selberg’s zeta function, congruence subgroups, Laplace–Beltrami operator, Selberg trace formula
Received by editor(s): February 17, 2010
Published electronically: April 13, 2012
Article copyright: © Copyright 2012 American Mathematical Society