Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On uniform approximation of harmonic functions


Author: M. Ya. Mazalov
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 23 (2011), nomer 4.
Journal: St. Petersburg Math. J. 23 (2012), 731-759
MSC (2010): Primary 31B15, 31B05; Secondary 41A63
DOI: https://doi.org/10.1090/S1061-0022-2012-01215-X
Published electronically: April 13, 2012
MathSciNet review: 2893523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is devoted to uniform approximation by harmonic functions on compact sets. The result is an approximation theorem for an individual function under the condition that, on the complement to the compact set, the harmonic capacity is ``homogeneous'' in a sense. The proof involves a refinement of Vitushkin's localization method.


References [Enhancements On Off] (What's this?)

  • 1. M. V. Keldysh, On the solvability and the stability of the Dirichlet problem, Uspekhi Mat. Nauk vyp. 8 (1941), 171-231. (Russian)
  • 2. J. Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103-113. MR 0037414 (12:258c)
  • 3. A. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, Uspekhi Mat. Nauk 22 (1967), no. 6, 141-199; English transl. in Russian Math. Surveys 22 (1967), no. 6. MR 0229838 (37:5404)
  • 4. A. G. O'Farrell, Uniform approximation by harmonic functions, Problem Book 3. Part 2, Lecture Notes in Math., vol. 1574, Springer-Verlag, 1994, Problem 12.15, p. 121.
  • 5. P. V. Paramonov, Harmonic approximations in the $ C^1$-norm, Mat. Sb. 181 (1990), no. 10, 1341-1365; English transl., Math. USSR-Sb. 71 (1992), no. 1, 183-207. MR 1085885 (92j:31006)
  • 6. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., No. 30, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • 7. R. Harvey and J. Polking, A notion of capacity which characterizes removable singularities, Trans. Amer. Math. Soc. 169 (1972), 183-195. MR 0306740 (46:5862)
  • 8. M. Ya. Mazalov, A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations, Mat. Sb. 199 (2008), no. 1, 15-46; English transl., Sb. Math. 199 (2008), no. 1-2, 13-44. MR 2410145 (2009c:35005)
  • 9. -, On uniform approximations by bi-analytic functions on arbitrary compact sets in $ \mathbb{C}$, Mat. Sb. 195 (2004), no. 5, 79-102; English transl., Sb. Math. 195 (2004), no. 5-6, 687-709. MR 2091640 (2005g:30044)
  • 10. J. Verdera, The uniform approximation problem for the square of the Cauchy-Riemann operator, Problem Book 3. Part 2, Lecture Notes in Math., vol. 1574, Springer-Verlag, 1994, Problem 12.16, pp. 122-123. MR 1214077 (94d:30070)
  • 11. P. V. Paramonov, Some new criteria for the uniform approximability of functions by rational fractions, Mat. Sb. 186 (1995), no. 9, 97-112; English transl., Sb. Math. 186 (1995), no. 9, 1325-1340. MR 1360189 (96m:41017)
  • 12. J. Verdera, M. S. Mel'nikov, and P. V. Paramonov, $ C^1$-approximation and the extension of subharmonic functions, Mat. Sb. 192 (2001), no. 4, 37-58; English transl., Sb. Math. 192 (2001), no. 3-4, 515-535. MR 1834090 (2002g:41030)
  • 13. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Stud., No. 13D, Van Nostrand Co., Inc., Princeton, 1967. MR 0225986 (37:1576)
  • 14. R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39-56. MR 0279461 (43:5183)
  • 15. N. N. Tarkhanov, Laurent series for solutions of elliptic systems, Nauka, Novosibirsk, 1991. (Russian) MR 1226897 (94e:35013)
  • 16. P. V. Paramonov and K. Yu. Fedorovskiĭ, On uniform and $ C^1$-approximability of functions on compact sets in $ \mathbb{R}^2$ by solutions of second-order elliptic equations, Mat. Sb. 190 (1999), no. 2, 123-144; English transl., Sb. Math. 190 (1999), no. 1-2, 285-307. MR 1701003 (2000k:41024)
  • 17. N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966; English transl., Grundlehren Math. Wiss., Bd. 180, Springer-Verlag, New York-Heidelberg, 1972. MR 0214795 (35:5644); MR 0350027 (50:2520)
  • 18. G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480 (92k:42021)
  • 19. W. Rudin, Functional analysis, McGraw-Hill Book Co., New York, 1973. MR 0365062 (51:1315)
  • 20. J. Mateu and J. Orobitg, Lipshitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J. 39 (1990), 703-736. MR 1078735 (92e:46052)
  • 21. V. S. Vladimirov, The equations of mathematical physics, 5th ed., Nauka, Moscow, 1988; English transl., Pure Appl. Math., vol. 3, Marcel Dekker, Inc., New York, 1971. MR 0978200 (90m:00009); MR 0268497 (42:3394)
  • 22. J. Verdera, Removability, capacity and approximation, Complex Potential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer, Dordrecht, 1994, pp. 419-473. MR 1332967 (96b:30086)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 31B15, 31B05, 41A63

Retrieve articles in all journals with MSC (2010): 31B15, 31B05, 41A63


Additional Information

M. Ya. Mazalov
Affiliation: USSR Marshal A. M. Vasilevskiĭ Military Academy of Air Defence, Military Forces of RF, Ul. Kotovskogo 2, Smolensk 214027, Russia
Email: maksimmazalov@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-2012-01215-X
Keywords: Uniform approximation, harmonic functions, capacities, singular integrals, Carleson measures
Received by editor(s): March 15, 2010
Published electronically: April 13, 2012
Additional Notes: Supported in part by the grant NSh-3476.2010.1 for support of leading scientific schools
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society